Computing the Lebesgue integral over a ball
$begingroup$
Let $alpha in mathbb{R}$ and $lambda_n$ the Lebesgue measure on $mathbb{R^n}$.
Define $f:mathbb{R^n}backslash(0)tomathbb{R}, f(x)=leftlVert xrightrVert^alpha$
For which $alpha$ is $f$ Lebesgue integrable on $B_1(0):=lbrace x in mathbb{R^n}:leftlVert xrightrVert leq 1 rbrace$
and for which $alpha$ on $mathbb{R^n}backslash B_1(0)$?
Also, how to compute $int_{B_1(0)}f dlambda_n$ and $int_{mathbb{R^n}backslash B_1(0)}f dlambda_n$ if $f$ is integrable?
I tried:
$f$ is Lebesgue integrable on $B_1(0) Leftrightarrowint_{B_1(0)}|f| dlambda_n<infty$.
So if $alpha<infty$, then $f(x)$ is Lebesgue integrable.
For computing the integrals, I thought about using the transformation formula:
$int_{B_1(0)}leftlVert xrightrVert^alpha dlambda_n=alpha cdot int_{0}^{1}r^n d lambda_r$
Here I don't know how to continue. Is this method correct or is there another way to do this?
measure-theory lebesgue-integral lebesgue-measure
$endgroup$
add a comment |
$begingroup$
Let $alpha in mathbb{R}$ and $lambda_n$ the Lebesgue measure on $mathbb{R^n}$.
Define $f:mathbb{R^n}backslash(0)tomathbb{R}, f(x)=leftlVert xrightrVert^alpha$
For which $alpha$ is $f$ Lebesgue integrable on $B_1(0):=lbrace x in mathbb{R^n}:leftlVert xrightrVert leq 1 rbrace$
and for which $alpha$ on $mathbb{R^n}backslash B_1(0)$?
Also, how to compute $int_{B_1(0)}f dlambda_n$ and $int_{mathbb{R^n}backslash B_1(0)}f dlambda_n$ if $f$ is integrable?
I tried:
$f$ is Lebesgue integrable on $B_1(0) Leftrightarrowint_{B_1(0)}|f| dlambda_n<infty$.
So if $alpha<infty$, then $f(x)$ is Lebesgue integrable.
For computing the integrals, I thought about using the transformation formula:
$int_{B_1(0)}leftlVert xrightrVert^alpha dlambda_n=alpha cdot int_{0}^{1}r^n d lambda_r$
Here I don't know how to continue. Is this method correct or is there another way to do this?
measure-theory lebesgue-integral lebesgue-measure
$endgroup$
add a comment |
$begingroup$
Let $alpha in mathbb{R}$ and $lambda_n$ the Lebesgue measure on $mathbb{R^n}$.
Define $f:mathbb{R^n}backslash(0)tomathbb{R}, f(x)=leftlVert xrightrVert^alpha$
For which $alpha$ is $f$ Lebesgue integrable on $B_1(0):=lbrace x in mathbb{R^n}:leftlVert xrightrVert leq 1 rbrace$
and for which $alpha$ on $mathbb{R^n}backslash B_1(0)$?
Also, how to compute $int_{B_1(0)}f dlambda_n$ and $int_{mathbb{R^n}backslash B_1(0)}f dlambda_n$ if $f$ is integrable?
I tried:
$f$ is Lebesgue integrable on $B_1(0) Leftrightarrowint_{B_1(0)}|f| dlambda_n<infty$.
So if $alpha<infty$, then $f(x)$ is Lebesgue integrable.
For computing the integrals, I thought about using the transformation formula:
$int_{B_1(0)}leftlVert xrightrVert^alpha dlambda_n=alpha cdot int_{0}^{1}r^n d lambda_r$
Here I don't know how to continue. Is this method correct or is there another way to do this?
measure-theory lebesgue-integral lebesgue-measure
$endgroup$
Let $alpha in mathbb{R}$ and $lambda_n$ the Lebesgue measure on $mathbb{R^n}$.
Define $f:mathbb{R^n}backslash(0)tomathbb{R}, f(x)=leftlVert xrightrVert^alpha$
For which $alpha$ is $f$ Lebesgue integrable on $B_1(0):=lbrace x in mathbb{R^n}:leftlVert xrightrVert leq 1 rbrace$
and for which $alpha$ on $mathbb{R^n}backslash B_1(0)$?
Also, how to compute $int_{B_1(0)}f dlambda_n$ and $int_{mathbb{R^n}backslash B_1(0)}f dlambda_n$ if $f$ is integrable?
I tried:
$f$ is Lebesgue integrable on $B_1(0) Leftrightarrowint_{B_1(0)}|f| dlambda_n<infty$.
So if $alpha<infty$, then $f(x)$ is Lebesgue integrable.
For computing the integrals, I thought about using the transformation formula:
$int_{B_1(0)}leftlVert xrightrVert^alpha dlambda_n=alpha cdot int_{0}^{1}r^n d lambda_r$
Here I don't know how to continue. Is this method correct or is there another way to do this?
measure-theory lebesgue-integral lebesgue-measure
measure-theory lebesgue-integral lebesgue-measure
edited Dec 1 '18 at 16:52
Olsgur
asked Dec 1 '18 at 13:48
OlsgurOlsgur
564
564
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Consider spherical shells $S_{a,b}:={xin{mathbb R}^n,|,aleq|x|leq b}$. One then has
$$int_{S_{a,b}}|x|^alpha {rm d}(x)=omega_{n-1}int_a^b r^alpha>r^{n+1}>dr ,$$
whereby $omega_{n-1}$ denotes the $(n-1)$-dimensional surface area of $S^{n-1}subset{mathbb R}^n$. Now see what happens when $ato0+$ or $btoinfty$ for various values of $n$ and $alpha$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021360%2fcomputing-the-lebesgue-integral-over-a-ball%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Consider spherical shells $S_{a,b}:={xin{mathbb R}^n,|,aleq|x|leq b}$. One then has
$$int_{S_{a,b}}|x|^alpha {rm d}(x)=omega_{n-1}int_a^b r^alpha>r^{n+1}>dr ,$$
whereby $omega_{n-1}$ denotes the $(n-1)$-dimensional surface area of $S^{n-1}subset{mathbb R}^n$. Now see what happens when $ato0+$ or $btoinfty$ for various values of $n$ and $alpha$.
$endgroup$
add a comment |
$begingroup$
Consider spherical shells $S_{a,b}:={xin{mathbb R}^n,|,aleq|x|leq b}$. One then has
$$int_{S_{a,b}}|x|^alpha {rm d}(x)=omega_{n-1}int_a^b r^alpha>r^{n+1}>dr ,$$
whereby $omega_{n-1}$ denotes the $(n-1)$-dimensional surface area of $S^{n-1}subset{mathbb R}^n$. Now see what happens when $ato0+$ or $btoinfty$ for various values of $n$ and $alpha$.
$endgroup$
add a comment |
$begingroup$
Consider spherical shells $S_{a,b}:={xin{mathbb R}^n,|,aleq|x|leq b}$. One then has
$$int_{S_{a,b}}|x|^alpha {rm d}(x)=omega_{n-1}int_a^b r^alpha>r^{n+1}>dr ,$$
whereby $omega_{n-1}$ denotes the $(n-1)$-dimensional surface area of $S^{n-1}subset{mathbb R}^n$. Now see what happens when $ato0+$ or $btoinfty$ for various values of $n$ and $alpha$.
$endgroup$
Consider spherical shells $S_{a,b}:={xin{mathbb R}^n,|,aleq|x|leq b}$. One then has
$$int_{S_{a,b}}|x|^alpha {rm d}(x)=omega_{n-1}int_a^b r^alpha>r^{n+1}>dr ,$$
whereby $omega_{n-1}$ denotes the $(n-1)$-dimensional surface area of $S^{n-1}subset{mathbb R}^n$. Now see what happens when $ato0+$ or $btoinfty$ for various values of $n$ and $alpha$.
answered Dec 1 '18 at 17:03
Christian BlatterChristian Blatter
173k7113326
173k7113326
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021360%2fcomputing-the-lebesgue-integral-over-a-ball%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown