Determinant of a particular matrix.












12












$begingroup$


What is the best way to find determinant of the following matrix?



$$A=left(begin{matrix}
1&ax&a^2+x^2\1&ay&a^2+y^2\ 1&az&a^2+z^2
end{matrix}right)$$



I thought it looks like a Vandermonde matrix, but not exactly. I can't use $|A+B|=|A|+|B|$ to form a Vandermonde matrix. Please suggest. Thanks.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Did you mean $vert A + B vert = vert A vert + vert B vert$?
    $endgroup$
    – Bladewood
    Feb 15 at 22:20


















12












$begingroup$


What is the best way to find determinant of the following matrix?



$$A=left(begin{matrix}
1&ax&a^2+x^2\1&ay&a^2+y^2\ 1&az&a^2+z^2
end{matrix}right)$$



I thought it looks like a Vandermonde matrix, but not exactly. I can't use $|A+B|=|A|+|B|$ to form a Vandermonde matrix. Please suggest. Thanks.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Did you mean $vert A + B vert = vert A vert + vert B vert$?
    $endgroup$
    – Bladewood
    Feb 15 at 22:20
















12












12








12


1



$begingroup$


What is the best way to find determinant of the following matrix?



$$A=left(begin{matrix}
1&ax&a^2+x^2\1&ay&a^2+y^2\ 1&az&a^2+z^2
end{matrix}right)$$



I thought it looks like a Vandermonde matrix, but not exactly. I can't use $|A+B|=|A|+|B|$ to form a Vandermonde matrix. Please suggest. Thanks.










share|cite|improve this question











$endgroup$




What is the best way to find determinant of the following matrix?



$$A=left(begin{matrix}
1&ax&a^2+x^2\1&ay&a^2+y^2\ 1&az&a^2+z^2
end{matrix}right)$$



I thought it looks like a Vandermonde matrix, but not exactly. I can't use $|A+B|=|A|+|B|$ to form a Vandermonde matrix. Please suggest. Thanks.







linear-algebra matrices determinant






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 16 at 13:53









Rodrigo de Azevedo

13k41959




13k41959










asked Feb 15 at 16:30









neelkanthneelkanth

2,27621029




2,27621029








  • 1




    $begingroup$
    Did you mean $vert A + B vert = vert A vert + vert B vert$?
    $endgroup$
    – Bladewood
    Feb 15 at 22:20
















  • 1




    $begingroup$
    Did you mean $vert A + B vert = vert A vert + vert B vert$?
    $endgroup$
    – Bladewood
    Feb 15 at 22:20










1




1




$begingroup$
Did you mean $vert A + B vert = vert A vert + vert B vert$?
$endgroup$
– Bladewood
Feb 15 at 22:20






$begingroup$
Did you mean $vert A + B vert = vert A vert + vert B vert$?
$endgroup$
– Bladewood
Feb 15 at 22:20












3 Answers
3






active

oldest

votes


















23












$begingroup$

begin{align}
&|A|\
&=detleft(begin{matrix}
1&ax&a^2+x^2\1&ay&a^2+y^2\ 1&az&a^2+z^2
end{matrix}right) \
&=begin{vmatrix}
1&ax&a^2\1&ay&a^2\ 1&az&a^2
end{vmatrix}+begin{vmatrix}
1&ax&x^2\1&ay&y^2\ 1&az&z^2
end{vmatrix} tag{multilinearity on 3rd column} \
&=0+abegin{vmatrix}
1&x&x^2\1&y&y^2\ 1&z&z^2
end{vmatrix} \
&= a (x-y)(y-z)(z-x)
end{align}






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    i am confused which answer to be accepted ....all are nice....
    $endgroup$
    – neelkanth
    Feb 15 at 16:41






  • 1




    $begingroup$
    @neelkanth I suggest you throw a dice.
    $endgroup$
    – GNUSupporter 8964民主女神 地下教會
    Feb 15 at 16:42






  • 1




    $begingroup$
    I rolled I dice three time for better .... got three different choices every time .
    $endgroup$
    – neelkanth
    Feb 15 at 16:47






  • 1




    $begingroup$
    But that requires more resources. :P So, you save time but you have to have multiple dice then. :P
    $endgroup$
    – stressed out
    Feb 15 at 22:58






  • 1




    $begingroup$
    @stressedout You're right. That's why I say if possible. Perhaps OP was busy with a simulation of the Law of Large Number that he couldn't decide which answer to accept. :xd
    $endgroup$
    – GNUSupporter 8964民主女神 地下教會
    Feb 15 at 23:01



















16












$begingroup$

Note that
$$
detleft(begin{matrix}
1&ax&a^2+x^2\1&ay&a^2+y^2\ 1&az&a^2+z^2
end{matrix}right) =det left(begin{matrix}
1&ax&x^2\1&ay&y^2\ 1&az&z^2
end{matrix}right)=acdotdet left(begin{matrix}
1&x&x^2\1&y&y^2\ 1&z&z^2
end{matrix}right)
$$
which boils down to Vandermonde determinant
$$
a(x-y)(y-z)(z-x).
$$






share|cite|improve this answer









$endgroup$





















    6












    $begingroup$

    I think the best way it's the following:
    $$Delta=sum_{cyc}(ay(a^2+z^2)-ay(a^2+x^2))=asum_{cyc}(x^2z-x^2y)=a(x-y)(y-z)(z-x).$$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3114122%2fdeterminant-of-a-particular-matrix%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      23












      $begingroup$

      begin{align}
      &|A|\
      &=detleft(begin{matrix}
      1&ax&a^2+x^2\1&ay&a^2+y^2\ 1&az&a^2+z^2
      end{matrix}right) \
      &=begin{vmatrix}
      1&ax&a^2\1&ay&a^2\ 1&az&a^2
      end{vmatrix}+begin{vmatrix}
      1&ax&x^2\1&ay&y^2\ 1&az&z^2
      end{vmatrix} tag{multilinearity on 3rd column} \
      &=0+abegin{vmatrix}
      1&x&x^2\1&y&y^2\ 1&z&z^2
      end{vmatrix} \
      &= a (x-y)(y-z)(z-x)
      end{align}






      share|cite|improve this answer









      $endgroup$









      • 1




        $begingroup$
        i am confused which answer to be accepted ....all are nice....
        $endgroup$
        – neelkanth
        Feb 15 at 16:41






      • 1




        $begingroup$
        @neelkanth I suggest you throw a dice.
        $endgroup$
        – GNUSupporter 8964民主女神 地下教會
        Feb 15 at 16:42






      • 1




        $begingroup$
        I rolled I dice three time for better .... got three different choices every time .
        $endgroup$
        – neelkanth
        Feb 15 at 16:47






      • 1




        $begingroup$
        But that requires more resources. :P So, you save time but you have to have multiple dice then. :P
        $endgroup$
        – stressed out
        Feb 15 at 22:58






      • 1




        $begingroup$
        @stressedout You're right. That's why I say if possible. Perhaps OP was busy with a simulation of the Law of Large Number that he couldn't decide which answer to accept. :xd
        $endgroup$
        – GNUSupporter 8964民主女神 地下教會
        Feb 15 at 23:01
















      23












      $begingroup$

      begin{align}
      &|A|\
      &=detleft(begin{matrix}
      1&ax&a^2+x^2\1&ay&a^2+y^2\ 1&az&a^2+z^2
      end{matrix}right) \
      &=begin{vmatrix}
      1&ax&a^2\1&ay&a^2\ 1&az&a^2
      end{vmatrix}+begin{vmatrix}
      1&ax&x^2\1&ay&y^2\ 1&az&z^2
      end{vmatrix} tag{multilinearity on 3rd column} \
      &=0+abegin{vmatrix}
      1&x&x^2\1&y&y^2\ 1&z&z^2
      end{vmatrix} \
      &= a (x-y)(y-z)(z-x)
      end{align}






      share|cite|improve this answer









      $endgroup$









      • 1




        $begingroup$
        i am confused which answer to be accepted ....all are nice....
        $endgroup$
        – neelkanth
        Feb 15 at 16:41






      • 1




        $begingroup$
        @neelkanth I suggest you throw a dice.
        $endgroup$
        – GNUSupporter 8964民主女神 地下教會
        Feb 15 at 16:42






      • 1




        $begingroup$
        I rolled I dice three time for better .... got three different choices every time .
        $endgroup$
        – neelkanth
        Feb 15 at 16:47






      • 1




        $begingroup$
        But that requires more resources. :P So, you save time but you have to have multiple dice then. :P
        $endgroup$
        – stressed out
        Feb 15 at 22:58






      • 1




        $begingroup$
        @stressedout You're right. That's why I say if possible. Perhaps OP was busy with a simulation of the Law of Large Number that he couldn't decide which answer to accept. :xd
        $endgroup$
        – GNUSupporter 8964民主女神 地下教會
        Feb 15 at 23:01














      23












      23








      23





      $begingroup$

      begin{align}
      &|A|\
      &=detleft(begin{matrix}
      1&ax&a^2+x^2\1&ay&a^2+y^2\ 1&az&a^2+z^2
      end{matrix}right) \
      &=begin{vmatrix}
      1&ax&a^2\1&ay&a^2\ 1&az&a^2
      end{vmatrix}+begin{vmatrix}
      1&ax&x^2\1&ay&y^2\ 1&az&z^2
      end{vmatrix} tag{multilinearity on 3rd column} \
      &=0+abegin{vmatrix}
      1&x&x^2\1&y&y^2\ 1&z&z^2
      end{vmatrix} \
      &= a (x-y)(y-z)(z-x)
      end{align}






      share|cite|improve this answer









      $endgroup$



      begin{align}
      &|A|\
      &=detleft(begin{matrix}
      1&ax&a^2+x^2\1&ay&a^2+y^2\ 1&az&a^2+z^2
      end{matrix}right) \
      &=begin{vmatrix}
      1&ax&a^2\1&ay&a^2\ 1&az&a^2
      end{vmatrix}+begin{vmatrix}
      1&ax&x^2\1&ay&y^2\ 1&az&z^2
      end{vmatrix} tag{multilinearity on 3rd column} \
      &=0+abegin{vmatrix}
      1&x&x^2\1&y&y^2\ 1&z&z^2
      end{vmatrix} \
      &= a (x-y)(y-z)(z-x)
      end{align}







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered Feb 15 at 16:35









      GNUSupporter 8964民主女神 地下教會GNUSupporter 8964民主女神 地下教會

      13.3k72549




      13.3k72549








      • 1




        $begingroup$
        i am confused which answer to be accepted ....all are nice....
        $endgroup$
        – neelkanth
        Feb 15 at 16:41






      • 1




        $begingroup$
        @neelkanth I suggest you throw a dice.
        $endgroup$
        – GNUSupporter 8964民主女神 地下教會
        Feb 15 at 16:42






      • 1




        $begingroup$
        I rolled I dice three time for better .... got three different choices every time .
        $endgroup$
        – neelkanth
        Feb 15 at 16:47






      • 1




        $begingroup$
        But that requires more resources. :P So, you save time but you have to have multiple dice then. :P
        $endgroup$
        – stressed out
        Feb 15 at 22:58






      • 1




        $begingroup$
        @stressedout You're right. That's why I say if possible. Perhaps OP was busy with a simulation of the Law of Large Number that he couldn't decide which answer to accept. :xd
        $endgroup$
        – GNUSupporter 8964民主女神 地下教會
        Feb 15 at 23:01














      • 1




        $begingroup$
        i am confused which answer to be accepted ....all are nice....
        $endgroup$
        – neelkanth
        Feb 15 at 16:41






      • 1




        $begingroup$
        @neelkanth I suggest you throw a dice.
        $endgroup$
        – GNUSupporter 8964民主女神 地下教會
        Feb 15 at 16:42






      • 1




        $begingroup$
        I rolled I dice three time for better .... got three different choices every time .
        $endgroup$
        – neelkanth
        Feb 15 at 16:47






      • 1




        $begingroup$
        But that requires more resources. :P So, you save time but you have to have multiple dice then. :P
        $endgroup$
        – stressed out
        Feb 15 at 22:58






      • 1




        $begingroup$
        @stressedout You're right. That's why I say if possible. Perhaps OP was busy with a simulation of the Law of Large Number that he couldn't decide which answer to accept. :xd
        $endgroup$
        – GNUSupporter 8964民主女神 地下教會
        Feb 15 at 23:01








      1




      1




      $begingroup$
      i am confused which answer to be accepted ....all are nice....
      $endgroup$
      – neelkanth
      Feb 15 at 16:41




      $begingroup$
      i am confused which answer to be accepted ....all are nice....
      $endgroup$
      – neelkanth
      Feb 15 at 16:41




      1




      1




      $begingroup$
      @neelkanth I suggest you throw a dice.
      $endgroup$
      – GNUSupporter 8964民主女神 地下教會
      Feb 15 at 16:42




      $begingroup$
      @neelkanth I suggest you throw a dice.
      $endgroup$
      – GNUSupporter 8964民主女神 地下教會
      Feb 15 at 16:42




      1




      1




      $begingroup$
      I rolled I dice three time for better .... got three different choices every time .
      $endgroup$
      – neelkanth
      Feb 15 at 16:47




      $begingroup$
      I rolled I dice three time for better .... got three different choices every time .
      $endgroup$
      – neelkanth
      Feb 15 at 16:47




      1




      1




      $begingroup$
      But that requires more resources. :P So, you save time but you have to have multiple dice then. :P
      $endgroup$
      – stressed out
      Feb 15 at 22:58




      $begingroup$
      But that requires more resources. :P So, you save time but you have to have multiple dice then. :P
      $endgroup$
      – stressed out
      Feb 15 at 22:58




      1




      1




      $begingroup$
      @stressedout You're right. That's why I say if possible. Perhaps OP was busy with a simulation of the Law of Large Number that he couldn't decide which answer to accept. :xd
      $endgroup$
      – GNUSupporter 8964民主女神 地下教會
      Feb 15 at 23:01




      $begingroup$
      @stressedout You're right. That's why I say if possible. Perhaps OP was busy with a simulation of the Law of Large Number that he couldn't decide which answer to accept. :xd
      $endgroup$
      – GNUSupporter 8964民主女神 地下教會
      Feb 15 at 23:01











      16












      $begingroup$

      Note that
      $$
      detleft(begin{matrix}
      1&ax&a^2+x^2\1&ay&a^2+y^2\ 1&az&a^2+z^2
      end{matrix}right) =det left(begin{matrix}
      1&ax&x^2\1&ay&y^2\ 1&az&z^2
      end{matrix}right)=acdotdet left(begin{matrix}
      1&x&x^2\1&y&y^2\ 1&z&z^2
      end{matrix}right)
      $$
      which boils down to Vandermonde determinant
      $$
      a(x-y)(y-z)(z-x).
      $$






      share|cite|improve this answer









      $endgroup$


















        16












        $begingroup$

        Note that
        $$
        detleft(begin{matrix}
        1&ax&a^2+x^2\1&ay&a^2+y^2\ 1&az&a^2+z^2
        end{matrix}right) =det left(begin{matrix}
        1&ax&x^2\1&ay&y^2\ 1&az&z^2
        end{matrix}right)=acdotdet left(begin{matrix}
        1&x&x^2\1&y&y^2\ 1&z&z^2
        end{matrix}right)
        $$
        which boils down to Vandermonde determinant
        $$
        a(x-y)(y-z)(z-x).
        $$






        share|cite|improve this answer









        $endgroup$
















          16












          16








          16





          $begingroup$

          Note that
          $$
          detleft(begin{matrix}
          1&ax&a^2+x^2\1&ay&a^2+y^2\ 1&az&a^2+z^2
          end{matrix}right) =det left(begin{matrix}
          1&ax&x^2\1&ay&y^2\ 1&az&z^2
          end{matrix}right)=acdotdet left(begin{matrix}
          1&x&x^2\1&y&y^2\ 1&z&z^2
          end{matrix}right)
          $$
          which boils down to Vandermonde determinant
          $$
          a(x-y)(y-z)(z-x).
          $$






          share|cite|improve this answer









          $endgroup$



          Note that
          $$
          detleft(begin{matrix}
          1&ax&a^2+x^2\1&ay&a^2+y^2\ 1&az&a^2+z^2
          end{matrix}right) =det left(begin{matrix}
          1&ax&x^2\1&ay&y^2\ 1&az&z^2
          end{matrix}right)=acdotdet left(begin{matrix}
          1&x&x^2\1&y&y^2\ 1&z&z^2
          end{matrix}right)
          $$
          which boils down to Vandermonde determinant
          $$
          a(x-y)(y-z)(z-x).
          $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Feb 15 at 16:36









          SongSong

          14.4k1635




          14.4k1635























              6












              $begingroup$

              I think the best way it's the following:
              $$Delta=sum_{cyc}(ay(a^2+z^2)-ay(a^2+x^2))=asum_{cyc}(x^2z-x^2y)=a(x-y)(y-z)(z-x).$$






              share|cite|improve this answer









              $endgroup$


















                6












                $begingroup$

                I think the best way it's the following:
                $$Delta=sum_{cyc}(ay(a^2+z^2)-ay(a^2+x^2))=asum_{cyc}(x^2z-x^2y)=a(x-y)(y-z)(z-x).$$






                share|cite|improve this answer









                $endgroup$
















                  6












                  6








                  6





                  $begingroup$

                  I think the best way it's the following:
                  $$Delta=sum_{cyc}(ay(a^2+z^2)-ay(a^2+x^2))=asum_{cyc}(x^2z-x^2y)=a(x-y)(y-z)(z-x).$$






                  share|cite|improve this answer









                  $endgroup$



                  I think the best way it's the following:
                  $$Delta=sum_{cyc}(ay(a^2+z^2)-ay(a^2+x^2))=asum_{cyc}(x^2z-x^2y)=a(x-y)(y-z)(z-x).$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Feb 15 at 16:36









                  Michael RozenbergMichael Rozenberg

                  104k1892197




                  104k1892197






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3114122%2fdeterminant-of-a-particular-matrix%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      How to change which sound is reproduced for terminal bell?

                      Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

                      Can I use Tabulator js library in my java Spring + Thymeleaf project?