Definite integral finding unknown
$begingroup$
Given ∫1^2 f(u) du =-5, ∫1^2 h(u) du =4, ∫2^5 f(u) du =8.
Find the value of p if ∫1^5 [f(u)-3pu] du=39
I just know few on how to solve this
39 = ∫1^5 f(u) du - ∫1^5 3pu du
39 = ∫1^2 f(u) du + ∫2^5 f(u) du - ∫1^5 pu du
39 = -5+8 -3∫1^5 pu du
36 = -3∫1^5 pu du
What to do next?
definite-integrals
$endgroup$
add a comment |
$begingroup$
Given ∫1^2 f(u) du =-5, ∫1^2 h(u) du =4, ∫2^5 f(u) du =8.
Find the value of p if ∫1^5 [f(u)-3pu] du=39
I just know few on how to solve this
39 = ∫1^5 f(u) du - ∫1^5 3pu du
39 = ∫1^2 f(u) du + ∫2^5 f(u) du - ∫1^5 pu du
39 = -5+8 -3∫1^5 pu du
36 = -3∫1^5 pu du
What to do next?
definite-integrals
$endgroup$
$begingroup$
Oh and the ∫5/1 [f(u)-3pu] du=39
$endgroup$
– A Izalia
Dec 3 '18 at 18:15
1
$begingroup$
Please use MathJax for clarity. For example, by ∫2/1 f(u) du, do you mean $int_1^2 f(u) du$? If so, writeint_1^2 f(u) du
.
$endgroup$
– J.G.
Dec 3 '18 at 18:17
add a comment |
$begingroup$
Given ∫1^2 f(u) du =-5, ∫1^2 h(u) du =4, ∫2^5 f(u) du =8.
Find the value of p if ∫1^5 [f(u)-3pu] du=39
I just know few on how to solve this
39 = ∫1^5 f(u) du - ∫1^5 3pu du
39 = ∫1^2 f(u) du + ∫2^5 f(u) du - ∫1^5 pu du
39 = -5+8 -3∫1^5 pu du
36 = -3∫1^5 pu du
What to do next?
definite-integrals
$endgroup$
Given ∫1^2 f(u) du =-5, ∫1^2 h(u) du =4, ∫2^5 f(u) du =8.
Find the value of p if ∫1^5 [f(u)-3pu] du=39
I just know few on how to solve this
39 = ∫1^5 f(u) du - ∫1^5 3pu du
39 = ∫1^2 f(u) du + ∫2^5 f(u) du - ∫1^5 pu du
39 = -5+8 -3∫1^5 pu du
36 = -3∫1^5 pu du
What to do next?
definite-integrals
definite-integrals
edited Dec 3 '18 at 18:29
A Izalia
asked Dec 3 '18 at 18:13
A IzaliaA Izalia
11
11
$begingroup$
Oh and the ∫5/1 [f(u)-3pu] du=39
$endgroup$
– A Izalia
Dec 3 '18 at 18:15
1
$begingroup$
Please use MathJax for clarity. For example, by ∫2/1 f(u) du, do you mean $int_1^2 f(u) du$? If so, writeint_1^2 f(u) du
.
$endgroup$
– J.G.
Dec 3 '18 at 18:17
add a comment |
$begingroup$
Oh and the ∫5/1 [f(u)-3pu] du=39
$endgroup$
– A Izalia
Dec 3 '18 at 18:15
1
$begingroup$
Please use MathJax for clarity. For example, by ∫2/1 f(u) du, do you mean $int_1^2 f(u) du$? If so, writeint_1^2 f(u) du
.
$endgroup$
– J.G.
Dec 3 '18 at 18:17
$begingroup$
Oh and the ∫5/1 [f(u)-3pu] du=39
$endgroup$
– A Izalia
Dec 3 '18 at 18:15
$begingroup$
Oh and the ∫5/1 [f(u)-3pu] du=39
$endgroup$
– A Izalia
Dec 3 '18 at 18:15
1
1
$begingroup$
Please use MathJax for clarity. For example, by ∫2/1 f(u) du, do you mean $int_1^2 f(u) du$? If so, write
int_1^2 f(u) du
.$endgroup$
– J.G.
Dec 3 '18 at 18:17
$begingroup$
Please use MathJax for clarity. For example, by ∫2/1 f(u) du, do you mean $int_1^2 f(u) du$? If so, write
int_1^2 f(u) du
.$endgroup$
– J.G.
Dec 3 '18 at 18:17
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Assuming I've understood your question:
Since $int_1^5 f(u) du=-5+8=3$, $3p=frac{3-39}{int_1^5 u du}=-frac{36}{12}=-3$, i.e. $p=-1$.
$endgroup$
$begingroup$
Thankyouuu so much
$endgroup$
– A Izalia
Dec 3 '18 at 18:37
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024466%2fdefinite-integral-finding-unknown%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Assuming I've understood your question:
Since $int_1^5 f(u) du=-5+8=3$, $3p=frac{3-39}{int_1^5 u du}=-frac{36}{12}=-3$, i.e. $p=-1$.
$endgroup$
$begingroup$
Thankyouuu so much
$endgroup$
– A Izalia
Dec 3 '18 at 18:37
add a comment |
$begingroup$
Assuming I've understood your question:
Since $int_1^5 f(u) du=-5+8=3$, $3p=frac{3-39}{int_1^5 u du}=-frac{36}{12}=-3$, i.e. $p=-1$.
$endgroup$
$begingroup$
Thankyouuu so much
$endgroup$
– A Izalia
Dec 3 '18 at 18:37
add a comment |
$begingroup$
Assuming I've understood your question:
Since $int_1^5 f(u) du=-5+8=3$, $3p=frac{3-39}{int_1^5 u du}=-frac{36}{12}=-3$, i.e. $p=-1$.
$endgroup$
Assuming I've understood your question:
Since $int_1^5 f(u) du=-5+8=3$, $3p=frac{3-39}{int_1^5 u du}=-frac{36}{12}=-3$, i.e. $p=-1$.
answered Dec 3 '18 at 18:19
J.G.J.G.
27.7k22843
27.7k22843
$begingroup$
Thankyouuu so much
$endgroup$
– A Izalia
Dec 3 '18 at 18:37
add a comment |
$begingroup$
Thankyouuu so much
$endgroup$
– A Izalia
Dec 3 '18 at 18:37
$begingroup$
Thankyouuu so much
$endgroup$
– A Izalia
Dec 3 '18 at 18:37
$begingroup$
Thankyouuu so much
$endgroup$
– A Izalia
Dec 3 '18 at 18:37
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024466%2fdefinite-integral-finding-unknown%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Oh and the ∫5/1 [f(u)-3pu] du=39
$endgroup$
– A Izalia
Dec 3 '18 at 18:15
1
$begingroup$
Please use MathJax for clarity. For example, by ∫2/1 f(u) du, do you mean $int_1^2 f(u) du$? If so, write
int_1^2 f(u) du
.$endgroup$
– J.G.
Dec 3 '18 at 18:17