CDF of a ratio of exponential variables
$begingroup$
Let $X$ and $Y$ be independent exponential variables with rates $alpha$ and $beta$, respectively. Find the CDF of $X/Y$.
I tried out the problem, and wanted to check to see if my answer of: $frac{alpha}{ beta/t + alpha}$ is correct, where $t$ is the time, which we need in our final answer since we need a cdf.
Can someone verify if this is correct?
statistics probability-distributions
$endgroup$
add a comment |
$begingroup$
Let $X$ and $Y$ be independent exponential variables with rates $alpha$ and $beta$, respectively. Find the CDF of $X/Y$.
I tried out the problem, and wanted to check to see if my answer of: $frac{alpha}{ beta/t + alpha}$ is correct, where $t$ is the time, which we need in our final answer since we need a cdf.
Can someone verify if this is correct?
statistics probability-distributions
$endgroup$
add a comment |
$begingroup$
Let $X$ and $Y$ be independent exponential variables with rates $alpha$ and $beta$, respectively. Find the CDF of $X/Y$.
I tried out the problem, and wanted to check to see if my answer of: $frac{alpha}{ beta/t + alpha}$ is correct, where $t$ is the time, which we need in our final answer since we need a cdf.
Can someone verify if this is correct?
statistics probability-distributions
$endgroup$
Let $X$ and $Y$ be independent exponential variables with rates $alpha$ and $beta$, respectively. Find the CDF of $X/Y$.
I tried out the problem, and wanted to check to see if my answer of: $frac{alpha}{ beta/t + alpha}$ is correct, where $t$ is the time, which we need in our final answer since we need a cdf.
Can someone verify if this is correct?
statistics probability-distributions
statistics probability-distributions
edited Jan 29 '12 at 0:04
Srivatsan
21k371126
21k371126
asked Apr 19 '11 at 4:50
marymary
50921449
50921449
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Recall one of the most important characterizations of the exponential distribution:
The random variable $Y$ is exponentially distributed with rate $beta$ if and only if $P(Ygeqslant y)=mathrm{e}^{-beta y}$ for every $ygeqslant0$.
Let $Z=X/Y$ and $tgt0$. Conditioning on $X$ and applying our characterization to $y=X/t$, one gets
$$
P(Zleqslant t)=P(Ygeqslant X/t)=E(mathrm{e}^{-beta X/t}).
$$
Now, the density of the distribution of $X$ is $alphamathrm{e}^{-alpha x}$ on $xgeqslant0$, hence for every $gammageqslant0$,
$$
E(mathrm{e}^{-gamma X})=int_0^{+infty}alphamathrm{e}^{-(alpha+gamma) x}mathrm{d}x=frac{alpha}{alpha+gamma}left[-mathrm{e}^{-(alpha+gamma) x}right]_{0}^{+infty}=frac{alpha}{alpha+gamma}.
$$
Substituting $gamma=beta/t$ yields the formula.
$endgroup$
$begingroup$
What is the probability distribution function?
$endgroup$
– user
Mar 11 '14 at 4:37
4
$begingroup$
@user How to deduce the PDF from the CDF? Tell me...
$endgroup$
– Did
Mar 11 '14 at 6:34
$begingroup$
@Did how did you arrive to $P(Ygeqslant X/t)=E(mathrm{e}^{-beta X/t})$. How is the probability and expectation related?
$endgroup$
– user35443
Nov 1 '18 at 13:57
$begingroup$
@user35443 For every $xgeqslant0$, $P(Ygeqslant x/t)=e^{-beta x/t}$. Now, $X$ is independent of $Y$ hence $P(Ygeqslant X/tmid X)=e^{-beta X/t}$ almost surely. Finally, take expectations on both sides.
$endgroup$
– Did
Nov 3 '18 at 14:56
$begingroup$
Makes sense, thanks!
$endgroup$
– user35443
Nov 4 '18 at 18:18
add a comment |
$begingroup$
Here's a slightly different point of view.
begin{align}
Prleft( frac X Y ge t right) & = iintlimits_{{,(x,y),:, x,ge,ty,ge,0 ,}} e^{-alpha x} e^{-beta y} (alphabeta,d(x,y)) \[10pt]
& = int_0^infty left( int_{ty}^infty e^{-alpha x} (alpha,dx) right) e^{-beta y} (beta,dy) \[10pt]
& = int_0^infty (e^{-alpha ty}) e^{-beta y} (beta,dy) \[10pt]
& = beta int_0^infty e^{-(alpha t+beta)y} , dy = frac beta {alpha t + beta}.
end{align}
This is $1$ minus the c.d.f. Find the c.d.f. and differentiate to get the p.d.f. on the interval $tge0.$
$endgroup$
add a comment |
$begingroup$
This is correct. I did the calculation and got the same answer.
$endgroup$
$begingroup$
Did you use u-substitutions, a lot of them?
$endgroup$
– mary
Apr 19 '11 at 5:02
$begingroup$
No, I used Mathematica :) If you do it by hand and you are not familiar with $int alpha e^{-alpha x} dx$ you might need a lot of substitutions.
$endgroup$
– GWu
Apr 19 '11 at 5:03
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f33778%2fcdf-of-a-ratio-of-exponential-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Recall one of the most important characterizations of the exponential distribution:
The random variable $Y$ is exponentially distributed with rate $beta$ if and only if $P(Ygeqslant y)=mathrm{e}^{-beta y}$ for every $ygeqslant0$.
Let $Z=X/Y$ and $tgt0$. Conditioning on $X$ and applying our characterization to $y=X/t$, one gets
$$
P(Zleqslant t)=P(Ygeqslant X/t)=E(mathrm{e}^{-beta X/t}).
$$
Now, the density of the distribution of $X$ is $alphamathrm{e}^{-alpha x}$ on $xgeqslant0$, hence for every $gammageqslant0$,
$$
E(mathrm{e}^{-gamma X})=int_0^{+infty}alphamathrm{e}^{-(alpha+gamma) x}mathrm{d}x=frac{alpha}{alpha+gamma}left[-mathrm{e}^{-(alpha+gamma) x}right]_{0}^{+infty}=frac{alpha}{alpha+gamma}.
$$
Substituting $gamma=beta/t$ yields the formula.
$endgroup$
$begingroup$
What is the probability distribution function?
$endgroup$
– user
Mar 11 '14 at 4:37
4
$begingroup$
@user How to deduce the PDF from the CDF? Tell me...
$endgroup$
– Did
Mar 11 '14 at 6:34
$begingroup$
@Did how did you arrive to $P(Ygeqslant X/t)=E(mathrm{e}^{-beta X/t})$. How is the probability and expectation related?
$endgroup$
– user35443
Nov 1 '18 at 13:57
$begingroup$
@user35443 For every $xgeqslant0$, $P(Ygeqslant x/t)=e^{-beta x/t}$. Now, $X$ is independent of $Y$ hence $P(Ygeqslant X/tmid X)=e^{-beta X/t}$ almost surely. Finally, take expectations on both sides.
$endgroup$
– Did
Nov 3 '18 at 14:56
$begingroup$
Makes sense, thanks!
$endgroup$
– user35443
Nov 4 '18 at 18:18
add a comment |
$begingroup$
Recall one of the most important characterizations of the exponential distribution:
The random variable $Y$ is exponentially distributed with rate $beta$ if and only if $P(Ygeqslant y)=mathrm{e}^{-beta y}$ for every $ygeqslant0$.
Let $Z=X/Y$ and $tgt0$. Conditioning on $X$ and applying our characterization to $y=X/t$, one gets
$$
P(Zleqslant t)=P(Ygeqslant X/t)=E(mathrm{e}^{-beta X/t}).
$$
Now, the density of the distribution of $X$ is $alphamathrm{e}^{-alpha x}$ on $xgeqslant0$, hence for every $gammageqslant0$,
$$
E(mathrm{e}^{-gamma X})=int_0^{+infty}alphamathrm{e}^{-(alpha+gamma) x}mathrm{d}x=frac{alpha}{alpha+gamma}left[-mathrm{e}^{-(alpha+gamma) x}right]_{0}^{+infty}=frac{alpha}{alpha+gamma}.
$$
Substituting $gamma=beta/t$ yields the formula.
$endgroup$
$begingroup$
What is the probability distribution function?
$endgroup$
– user
Mar 11 '14 at 4:37
4
$begingroup$
@user How to deduce the PDF from the CDF? Tell me...
$endgroup$
– Did
Mar 11 '14 at 6:34
$begingroup$
@Did how did you arrive to $P(Ygeqslant X/t)=E(mathrm{e}^{-beta X/t})$. How is the probability and expectation related?
$endgroup$
– user35443
Nov 1 '18 at 13:57
$begingroup$
@user35443 For every $xgeqslant0$, $P(Ygeqslant x/t)=e^{-beta x/t}$. Now, $X$ is independent of $Y$ hence $P(Ygeqslant X/tmid X)=e^{-beta X/t}$ almost surely. Finally, take expectations on both sides.
$endgroup$
– Did
Nov 3 '18 at 14:56
$begingroup$
Makes sense, thanks!
$endgroup$
– user35443
Nov 4 '18 at 18:18
add a comment |
$begingroup$
Recall one of the most important characterizations of the exponential distribution:
The random variable $Y$ is exponentially distributed with rate $beta$ if and only if $P(Ygeqslant y)=mathrm{e}^{-beta y}$ for every $ygeqslant0$.
Let $Z=X/Y$ and $tgt0$. Conditioning on $X$ and applying our characterization to $y=X/t$, one gets
$$
P(Zleqslant t)=P(Ygeqslant X/t)=E(mathrm{e}^{-beta X/t}).
$$
Now, the density of the distribution of $X$ is $alphamathrm{e}^{-alpha x}$ on $xgeqslant0$, hence for every $gammageqslant0$,
$$
E(mathrm{e}^{-gamma X})=int_0^{+infty}alphamathrm{e}^{-(alpha+gamma) x}mathrm{d}x=frac{alpha}{alpha+gamma}left[-mathrm{e}^{-(alpha+gamma) x}right]_{0}^{+infty}=frac{alpha}{alpha+gamma}.
$$
Substituting $gamma=beta/t$ yields the formula.
$endgroup$
Recall one of the most important characterizations of the exponential distribution:
The random variable $Y$ is exponentially distributed with rate $beta$ if and only if $P(Ygeqslant y)=mathrm{e}^{-beta y}$ for every $ygeqslant0$.
Let $Z=X/Y$ and $tgt0$. Conditioning on $X$ and applying our characterization to $y=X/t$, one gets
$$
P(Zleqslant t)=P(Ygeqslant X/t)=E(mathrm{e}^{-beta X/t}).
$$
Now, the density of the distribution of $X$ is $alphamathrm{e}^{-alpha x}$ on $xgeqslant0$, hence for every $gammageqslant0$,
$$
E(mathrm{e}^{-gamma X})=int_0^{+infty}alphamathrm{e}^{-(alpha+gamma) x}mathrm{d}x=frac{alpha}{alpha+gamma}left[-mathrm{e}^{-(alpha+gamma) x}right]_{0}^{+infty}=frac{alpha}{alpha+gamma}.
$$
Substituting $gamma=beta/t$ yields the formula.
edited Jun 6 '13 at 6:54
answered Apr 19 '11 at 5:46
DidDid
248k23224463
248k23224463
$begingroup$
What is the probability distribution function?
$endgroup$
– user
Mar 11 '14 at 4:37
4
$begingroup$
@user How to deduce the PDF from the CDF? Tell me...
$endgroup$
– Did
Mar 11 '14 at 6:34
$begingroup$
@Did how did you arrive to $P(Ygeqslant X/t)=E(mathrm{e}^{-beta X/t})$. How is the probability and expectation related?
$endgroup$
– user35443
Nov 1 '18 at 13:57
$begingroup$
@user35443 For every $xgeqslant0$, $P(Ygeqslant x/t)=e^{-beta x/t}$. Now, $X$ is independent of $Y$ hence $P(Ygeqslant X/tmid X)=e^{-beta X/t}$ almost surely. Finally, take expectations on both sides.
$endgroup$
– Did
Nov 3 '18 at 14:56
$begingroup$
Makes sense, thanks!
$endgroup$
– user35443
Nov 4 '18 at 18:18
add a comment |
$begingroup$
What is the probability distribution function?
$endgroup$
– user
Mar 11 '14 at 4:37
4
$begingroup$
@user How to deduce the PDF from the CDF? Tell me...
$endgroup$
– Did
Mar 11 '14 at 6:34
$begingroup$
@Did how did you arrive to $P(Ygeqslant X/t)=E(mathrm{e}^{-beta X/t})$. How is the probability and expectation related?
$endgroup$
– user35443
Nov 1 '18 at 13:57
$begingroup$
@user35443 For every $xgeqslant0$, $P(Ygeqslant x/t)=e^{-beta x/t}$. Now, $X$ is independent of $Y$ hence $P(Ygeqslant X/tmid X)=e^{-beta X/t}$ almost surely. Finally, take expectations on both sides.
$endgroup$
– Did
Nov 3 '18 at 14:56
$begingroup$
Makes sense, thanks!
$endgroup$
– user35443
Nov 4 '18 at 18:18
$begingroup$
What is the probability distribution function?
$endgroup$
– user
Mar 11 '14 at 4:37
$begingroup$
What is the probability distribution function?
$endgroup$
– user
Mar 11 '14 at 4:37
4
4
$begingroup$
@user How to deduce the PDF from the CDF? Tell me...
$endgroup$
– Did
Mar 11 '14 at 6:34
$begingroup$
@user How to deduce the PDF from the CDF? Tell me...
$endgroup$
– Did
Mar 11 '14 at 6:34
$begingroup$
@Did how did you arrive to $P(Ygeqslant X/t)=E(mathrm{e}^{-beta X/t})$. How is the probability and expectation related?
$endgroup$
– user35443
Nov 1 '18 at 13:57
$begingroup$
@Did how did you arrive to $P(Ygeqslant X/t)=E(mathrm{e}^{-beta X/t})$. How is the probability and expectation related?
$endgroup$
– user35443
Nov 1 '18 at 13:57
$begingroup$
@user35443 For every $xgeqslant0$, $P(Ygeqslant x/t)=e^{-beta x/t}$. Now, $X$ is independent of $Y$ hence $P(Ygeqslant X/tmid X)=e^{-beta X/t}$ almost surely. Finally, take expectations on both sides.
$endgroup$
– Did
Nov 3 '18 at 14:56
$begingroup$
@user35443 For every $xgeqslant0$, $P(Ygeqslant x/t)=e^{-beta x/t}$. Now, $X$ is independent of $Y$ hence $P(Ygeqslant X/tmid X)=e^{-beta X/t}$ almost surely. Finally, take expectations on both sides.
$endgroup$
– Did
Nov 3 '18 at 14:56
$begingroup$
Makes sense, thanks!
$endgroup$
– user35443
Nov 4 '18 at 18:18
$begingroup$
Makes sense, thanks!
$endgroup$
– user35443
Nov 4 '18 at 18:18
add a comment |
$begingroup$
Here's a slightly different point of view.
begin{align}
Prleft( frac X Y ge t right) & = iintlimits_{{,(x,y),:, x,ge,ty,ge,0 ,}} e^{-alpha x} e^{-beta y} (alphabeta,d(x,y)) \[10pt]
& = int_0^infty left( int_{ty}^infty e^{-alpha x} (alpha,dx) right) e^{-beta y} (beta,dy) \[10pt]
& = int_0^infty (e^{-alpha ty}) e^{-beta y} (beta,dy) \[10pt]
& = beta int_0^infty e^{-(alpha t+beta)y} , dy = frac beta {alpha t + beta}.
end{align}
This is $1$ minus the c.d.f. Find the c.d.f. and differentiate to get the p.d.f. on the interval $tge0.$
$endgroup$
add a comment |
$begingroup$
Here's a slightly different point of view.
begin{align}
Prleft( frac X Y ge t right) & = iintlimits_{{,(x,y),:, x,ge,ty,ge,0 ,}} e^{-alpha x} e^{-beta y} (alphabeta,d(x,y)) \[10pt]
& = int_0^infty left( int_{ty}^infty e^{-alpha x} (alpha,dx) right) e^{-beta y} (beta,dy) \[10pt]
& = int_0^infty (e^{-alpha ty}) e^{-beta y} (beta,dy) \[10pt]
& = beta int_0^infty e^{-(alpha t+beta)y} , dy = frac beta {alpha t + beta}.
end{align}
This is $1$ minus the c.d.f. Find the c.d.f. and differentiate to get the p.d.f. on the interval $tge0.$
$endgroup$
add a comment |
$begingroup$
Here's a slightly different point of view.
begin{align}
Prleft( frac X Y ge t right) & = iintlimits_{{,(x,y),:, x,ge,ty,ge,0 ,}} e^{-alpha x} e^{-beta y} (alphabeta,d(x,y)) \[10pt]
& = int_0^infty left( int_{ty}^infty e^{-alpha x} (alpha,dx) right) e^{-beta y} (beta,dy) \[10pt]
& = int_0^infty (e^{-alpha ty}) e^{-beta y} (beta,dy) \[10pt]
& = beta int_0^infty e^{-(alpha t+beta)y} , dy = frac beta {alpha t + beta}.
end{align}
This is $1$ minus the c.d.f. Find the c.d.f. and differentiate to get the p.d.f. on the interval $tge0.$
$endgroup$
Here's a slightly different point of view.
begin{align}
Prleft( frac X Y ge t right) & = iintlimits_{{,(x,y),:, x,ge,ty,ge,0 ,}} e^{-alpha x} e^{-beta y} (alphabeta,d(x,y)) \[10pt]
& = int_0^infty left( int_{ty}^infty e^{-alpha x} (alpha,dx) right) e^{-beta y} (beta,dy) \[10pt]
& = int_0^infty (e^{-alpha ty}) e^{-beta y} (beta,dy) \[10pt]
& = beta int_0^infty e^{-(alpha t+beta)y} , dy = frac beta {alpha t + beta}.
end{align}
This is $1$ minus the c.d.f. Find the c.d.f. and differentiate to get the p.d.f. on the interval $tge0.$
edited Sep 2 '18 at 18:09
answered Dec 21 '17 at 19:32
Michael HardyMichael Hardy
1
1
add a comment |
add a comment |
$begingroup$
This is correct. I did the calculation and got the same answer.
$endgroup$
$begingroup$
Did you use u-substitutions, a lot of them?
$endgroup$
– mary
Apr 19 '11 at 5:02
$begingroup$
No, I used Mathematica :) If you do it by hand and you are not familiar with $int alpha e^{-alpha x} dx$ you might need a lot of substitutions.
$endgroup$
– GWu
Apr 19 '11 at 5:03
add a comment |
$begingroup$
This is correct. I did the calculation and got the same answer.
$endgroup$
$begingroup$
Did you use u-substitutions, a lot of them?
$endgroup$
– mary
Apr 19 '11 at 5:02
$begingroup$
No, I used Mathematica :) If you do it by hand and you are not familiar with $int alpha e^{-alpha x} dx$ you might need a lot of substitutions.
$endgroup$
– GWu
Apr 19 '11 at 5:03
add a comment |
$begingroup$
This is correct. I did the calculation and got the same answer.
$endgroup$
This is correct. I did the calculation and got the same answer.
answered Apr 19 '11 at 5:01
GWuGWu
1,204710
1,204710
$begingroup$
Did you use u-substitutions, a lot of them?
$endgroup$
– mary
Apr 19 '11 at 5:02
$begingroup$
No, I used Mathematica :) If you do it by hand and you are not familiar with $int alpha e^{-alpha x} dx$ you might need a lot of substitutions.
$endgroup$
– GWu
Apr 19 '11 at 5:03
add a comment |
$begingroup$
Did you use u-substitutions, a lot of them?
$endgroup$
– mary
Apr 19 '11 at 5:02
$begingroup$
No, I used Mathematica :) If you do it by hand and you are not familiar with $int alpha e^{-alpha x} dx$ you might need a lot of substitutions.
$endgroup$
– GWu
Apr 19 '11 at 5:03
$begingroup$
Did you use u-substitutions, a lot of them?
$endgroup$
– mary
Apr 19 '11 at 5:02
$begingroup$
Did you use u-substitutions, a lot of them?
$endgroup$
– mary
Apr 19 '11 at 5:02
$begingroup$
No, I used Mathematica :) If you do it by hand and you are not familiar with $int alpha e^{-alpha x} dx$ you might need a lot of substitutions.
$endgroup$
– GWu
Apr 19 '11 at 5:03
$begingroup$
No, I used Mathematica :) If you do it by hand and you are not familiar with $int alpha e^{-alpha x} dx$ you might need a lot of substitutions.
$endgroup$
– GWu
Apr 19 '11 at 5:03
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f33778%2fcdf-of-a-ratio-of-exponential-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown