What am I doing wrong finding the derivative of $frac{3-x}{2}sqrt{1-2x-x^2}+2arcsin{frac{1+x}{sqrt{2}}}$?
$$y=frac{3-x}{2}sqrt{1-2x-x^2}+2arcsin{frac{1+x}{sqrt{2}}}$$
For convenience, let
$$A=frac{3-x}{2}sqrt{1-2x-x^2},$$
$$B=2arcsin{frac{1+x}{sqrt{2}}}.$$
$$y'=A'+B'$$
$$A'=(-frac{1}{2})(sqrt{1-2x-x^2})+(-2x)(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}})(frac{3-x}{2})$$
$$A'=(-frac{1}{2})(sqrt{1-2x-x^2})+(-x)(frac{1}{{sqrt{1-2x-x^2}}})(frac{3-x}{2})$$
$$A'=(-frac{1-2x-x^2}{2sqrt{1-2x-x^2}})+(frac{x^2-3x}{{2sqrt{1-2x-x^2}}})$$
$$A'=(-frac{1-2x-x^2}{2sqrt{1-2x-x^2}})+(frac{x^2-3x}{{2sqrt{1-2x-x^2}}})$$
$$A'=frac{2x^2-x-1}{{2sqrt{1-2x-x^2}}}$$
$$B'=2bigg(arcsin{frac{1+x}{sqrt{2}}}bigg)'$$
$$B'=2 bigg( frac{1+x}{sqrt{2}} bigg)' bigg(arcsin{frac{1+x}{sqrt{2}}}bigg)'$$
$$B'=sqrt{2} bigg( frac{1}{sqrt{1- frac{1+2x+x^2}{2}} } bigg)$$
$$B'=sqrt{frac{4}{1-2x-x^2}}$$
$$B'=frac{4}{2sqrt{1-2x-x^2}}$$
$$y'=A'+B'=frac{2x^2-x+3}{2sqrt{1-2x-x^2}}$$
The answer in the book is
$$y'=frac{x^2}{sqrt{1-2x-x^2}}$$
calculus derivatives
add a comment |
$$y=frac{3-x}{2}sqrt{1-2x-x^2}+2arcsin{frac{1+x}{sqrt{2}}}$$
For convenience, let
$$A=frac{3-x}{2}sqrt{1-2x-x^2},$$
$$B=2arcsin{frac{1+x}{sqrt{2}}}.$$
$$y'=A'+B'$$
$$A'=(-frac{1}{2})(sqrt{1-2x-x^2})+(-2x)(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}})(frac{3-x}{2})$$
$$A'=(-frac{1}{2})(sqrt{1-2x-x^2})+(-x)(frac{1}{{sqrt{1-2x-x^2}}})(frac{3-x}{2})$$
$$A'=(-frac{1-2x-x^2}{2sqrt{1-2x-x^2}})+(frac{x^2-3x}{{2sqrt{1-2x-x^2}}})$$
$$A'=(-frac{1-2x-x^2}{2sqrt{1-2x-x^2}})+(frac{x^2-3x}{{2sqrt{1-2x-x^2}}})$$
$$A'=frac{2x^2-x-1}{{2sqrt{1-2x-x^2}}}$$
$$B'=2bigg(arcsin{frac{1+x}{sqrt{2}}}bigg)'$$
$$B'=2 bigg( frac{1+x}{sqrt{2}} bigg)' bigg(arcsin{frac{1+x}{sqrt{2}}}bigg)'$$
$$B'=sqrt{2} bigg( frac{1}{sqrt{1- frac{1+2x+x^2}{2}} } bigg)$$
$$B'=sqrt{frac{4}{1-2x-x^2}}$$
$$B'=frac{4}{2sqrt{1-2x-x^2}}$$
$$y'=A'+B'=frac{2x^2-x+3}{2sqrt{1-2x-x^2}}$$
The answer in the book is
$$y'=frac{x^2}{sqrt{1-2x-x^2}}$$
calculus derivatives
1
In the first line of your derivation of A': after the first summand, your second summand should be $$color{blue}{(-2 -2x)}(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}})(frac{3-x}{2})$$
– amWhy
Nov 22 '18 at 22:24
add a comment |
$$y=frac{3-x}{2}sqrt{1-2x-x^2}+2arcsin{frac{1+x}{sqrt{2}}}$$
For convenience, let
$$A=frac{3-x}{2}sqrt{1-2x-x^2},$$
$$B=2arcsin{frac{1+x}{sqrt{2}}}.$$
$$y'=A'+B'$$
$$A'=(-frac{1}{2})(sqrt{1-2x-x^2})+(-2x)(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}})(frac{3-x}{2})$$
$$A'=(-frac{1}{2})(sqrt{1-2x-x^2})+(-x)(frac{1}{{sqrt{1-2x-x^2}}})(frac{3-x}{2})$$
$$A'=(-frac{1-2x-x^2}{2sqrt{1-2x-x^2}})+(frac{x^2-3x}{{2sqrt{1-2x-x^2}}})$$
$$A'=(-frac{1-2x-x^2}{2sqrt{1-2x-x^2}})+(frac{x^2-3x}{{2sqrt{1-2x-x^2}}})$$
$$A'=frac{2x^2-x-1}{{2sqrt{1-2x-x^2}}}$$
$$B'=2bigg(arcsin{frac{1+x}{sqrt{2}}}bigg)'$$
$$B'=2 bigg( frac{1+x}{sqrt{2}} bigg)' bigg(arcsin{frac{1+x}{sqrt{2}}}bigg)'$$
$$B'=sqrt{2} bigg( frac{1}{sqrt{1- frac{1+2x+x^2}{2}} } bigg)$$
$$B'=sqrt{frac{4}{1-2x-x^2}}$$
$$B'=frac{4}{2sqrt{1-2x-x^2}}$$
$$y'=A'+B'=frac{2x^2-x+3}{2sqrt{1-2x-x^2}}$$
The answer in the book is
$$y'=frac{x^2}{sqrt{1-2x-x^2}}$$
calculus derivatives
$$y=frac{3-x}{2}sqrt{1-2x-x^2}+2arcsin{frac{1+x}{sqrt{2}}}$$
For convenience, let
$$A=frac{3-x}{2}sqrt{1-2x-x^2},$$
$$B=2arcsin{frac{1+x}{sqrt{2}}}.$$
$$y'=A'+B'$$
$$A'=(-frac{1}{2})(sqrt{1-2x-x^2})+(-2x)(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}})(frac{3-x}{2})$$
$$A'=(-frac{1}{2})(sqrt{1-2x-x^2})+(-x)(frac{1}{{sqrt{1-2x-x^2}}})(frac{3-x}{2})$$
$$A'=(-frac{1-2x-x^2}{2sqrt{1-2x-x^2}})+(frac{x^2-3x}{{2sqrt{1-2x-x^2}}})$$
$$A'=(-frac{1-2x-x^2}{2sqrt{1-2x-x^2}})+(frac{x^2-3x}{{2sqrt{1-2x-x^2}}})$$
$$A'=frac{2x^2-x-1}{{2sqrt{1-2x-x^2}}}$$
$$B'=2bigg(arcsin{frac{1+x}{sqrt{2}}}bigg)'$$
$$B'=2 bigg( frac{1+x}{sqrt{2}} bigg)' bigg(arcsin{frac{1+x}{sqrt{2}}}bigg)'$$
$$B'=sqrt{2} bigg( frac{1}{sqrt{1- frac{1+2x+x^2}{2}} } bigg)$$
$$B'=sqrt{frac{4}{1-2x-x^2}}$$
$$B'=frac{4}{2sqrt{1-2x-x^2}}$$
$$y'=A'+B'=frac{2x^2-x+3}{2sqrt{1-2x-x^2}}$$
The answer in the book is
$$y'=frac{x^2}{sqrt{1-2x-x^2}}$$
calculus derivatives
calculus derivatives
asked Nov 22 '18 at 22:17
fragileradiusfragileradius
297114
297114
1
In the first line of your derivation of A': after the first summand, your second summand should be $$color{blue}{(-2 -2x)}(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}})(frac{3-x}{2})$$
– amWhy
Nov 22 '18 at 22:24
add a comment |
1
In the first line of your derivation of A': after the first summand, your second summand should be $$color{blue}{(-2 -2x)}(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}})(frac{3-x}{2})$$
– amWhy
Nov 22 '18 at 22:24
1
1
In the first line of your derivation of A': after the first summand, your second summand should be $$color{blue}{(-2 -2x)}(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}})(frac{3-x}{2})$$
– amWhy
Nov 22 '18 at 22:24
In the first line of your derivation of A': after the first summand, your second summand should be $$color{blue}{(-2 -2x)}(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}})(frac{3-x}{2})$$
– amWhy
Nov 22 '18 at 22:24
add a comment |
3 Answers
3
active
oldest
votes
You got A' wrong.
$ A = frac{3-x}{2}cdot(sqrt{1-2x-x^2}) = fcdot g$
where: $ f =frac{3-x}{2} $ , $ g = sqrt{1-2x-x^2} $
$A'= f'g + g'f$
$ f'g = (-frac{1}{2})(sqrt{1-2x-x^2})$ is correct, but the second part is $ g'f = (-2x -2)(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}})(frac{3-x}{2})$ rather than
$(-2x)(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}})(frac{3-x}{2})$
like you wrote.
add a comment |
In first $A'$ instead of $(-2x)$ you have $(-2-2x)$
add a comment |
In the first line of your derivation of A': after the first summand, your second summand should be $$color{blue}{(-2 -2x)}left(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}}right)left(frac{3-x}{2}right)$$
So in fact, $$A'=left(-frac{1}{2}right)left(sqrt{1-2x-x^2}right)+ color{blue}{(-2 -2x)}left(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}}right)left(frac{3-x}{2}right)$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009739%2fwhat-am-i-doing-wrong-finding-the-derivative-of-frac3-x2-sqrt1-2x-x22%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
You got A' wrong.
$ A = frac{3-x}{2}cdot(sqrt{1-2x-x^2}) = fcdot g$
where: $ f =frac{3-x}{2} $ , $ g = sqrt{1-2x-x^2} $
$A'= f'g + g'f$
$ f'g = (-frac{1}{2})(sqrt{1-2x-x^2})$ is correct, but the second part is $ g'f = (-2x -2)(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}})(frac{3-x}{2})$ rather than
$(-2x)(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}})(frac{3-x}{2})$
like you wrote.
add a comment |
You got A' wrong.
$ A = frac{3-x}{2}cdot(sqrt{1-2x-x^2}) = fcdot g$
where: $ f =frac{3-x}{2} $ , $ g = sqrt{1-2x-x^2} $
$A'= f'g + g'f$
$ f'g = (-frac{1}{2})(sqrt{1-2x-x^2})$ is correct, but the second part is $ g'f = (-2x -2)(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}})(frac{3-x}{2})$ rather than
$(-2x)(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}})(frac{3-x}{2})$
like you wrote.
add a comment |
You got A' wrong.
$ A = frac{3-x}{2}cdot(sqrt{1-2x-x^2}) = fcdot g$
where: $ f =frac{3-x}{2} $ , $ g = sqrt{1-2x-x^2} $
$A'= f'g + g'f$
$ f'g = (-frac{1}{2})(sqrt{1-2x-x^2})$ is correct, but the second part is $ g'f = (-2x -2)(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}})(frac{3-x}{2})$ rather than
$(-2x)(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}})(frac{3-x}{2})$
like you wrote.
You got A' wrong.
$ A = frac{3-x}{2}cdot(sqrt{1-2x-x^2}) = fcdot g$
where: $ f =frac{3-x}{2} $ , $ g = sqrt{1-2x-x^2} $
$A'= f'g + g'f$
$ f'g = (-frac{1}{2})(sqrt{1-2x-x^2})$ is correct, but the second part is $ g'f = (-2x -2)(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}})(frac{3-x}{2})$ rather than
$(-2x)(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}})(frac{3-x}{2})$
like you wrote.
answered Nov 22 '18 at 22:30
Daphna KeidarDaphna Keidar
1996
1996
add a comment |
add a comment |
In first $A'$ instead of $(-2x)$ you have $(-2-2x)$
add a comment |
In first $A'$ instead of $(-2x)$ you have $(-2-2x)$
add a comment |
In first $A'$ instead of $(-2x)$ you have $(-2-2x)$
In first $A'$ instead of $(-2x)$ you have $(-2-2x)$
answered Nov 22 '18 at 22:25
asvasv
2841211
2841211
add a comment |
add a comment |
In the first line of your derivation of A': after the first summand, your second summand should be $$color{blue}{(-2 -2x)}left(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}}right)left(frac{3-x}{2}right)$$
So in fact, $$A'=left(-frac{1}{2}right)left(sqrt{1-2x-x^2}right)+ color{blue}{(-2 -2x)}left(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}}right)left(frac{3-x}{2}right)$$
add a comment |
In the first line of your derivation of A': after the first summand, your second summand should be $$color{blue}{(-2 -2x)}left(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}}right)left(frac{3-x}{2}right)$$
So in fact, $$A'=left(-frac{1}{2}right)left(sqrt{1-2x-x^2}right)+ color{blue}{(-2 -2x)}left(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}}right)left(frac{3-x}{2}right)$$
add a comment |
In the first line of your derivation of A': after the first summand, your second summand should be $$color{blue}{(-2 -2x)}left(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}}right)left(frac{3-x}{2}right)$$
So in fact, $$A'=left(-frac{1}{2}right)left(sqrt{1-2x-x^2}right)+ color{blue}{(-2 -2x)}left(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}}right)left(frac{3-x}{2}right)$$
In the first line of your derivation of A': after the first summand, your second summand should be $$color{blue}{(-2 -2x)}left(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}}right)left(frac{3-x}{2}right)$$
So in fact, $$A'=left(-frac{1}{2}right)left(sqrt{1-2x-x^2}right)+ color{blue}{(-2 -2x)}left(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}}right)left(frac{3-x}{2}right)$$
edited Nov 22 '18 at 22:47
answered Nov 22 '18 at 22:28
amWhyamWhy
192k28225439
192k28225439
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009739%2fwhat-am-i-doing-wrong-finding-the-derivative-of-frac3-x2-sqrt1-2x-x22%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
In the first line of your derivation of A': after the first summand, your second summand should be $$color{blue}{(-2 -2x)}(frac{1}{2}cdot frac{1}{{sqrt{1-2x-x^2}}})(frac{3-x}{2})$$
– amWhy
Nov 22 '18 at 22:24