So if a problem is more difficult the language it represents is smaller?












3














I'm reading the definition of polynomial time reducible:




Let $L_1, L_2$ be two language. If $L_1$ is polynomial time reducible to $L_2$ then exists $f:{0,1}^*$ s.t. $forall xin{0,1}^*$ $$xin L_1iff f(x)in L_2$$




For me this means the $L_1$ may be bigger (in cardinality) than $L_2$, but $L_2$ is more difficult since $L_1$ can be solved after reduced to $L_2$?










share|cite|improve this question






















  • How would define the cardinality of an infinite set being larger than another infinite set (both being countable sets)?
    – dkaeae
    Dec 31 '18 at 14:53










  • You can find examples in which $L_1$ is a strict subset of $L_2$ (and vice versa).
    – Yuval Filmus
    Dec 31 '18 at 15:17
















3














I'm reading the definition of polynomial time reducible:




Let $L_1, L_2$ be two language. If $L_1$ is polynomial time reducible to $L_2$ then exists $f:{0,1}^*$ s.t. $forall xin{0,1}^*$ $$xin L_1iff f(x)in L_2$$




For me this means the $L_1$ may be bigger (in cardinality) than $L_2$, but $L_2$ is more difficult since $L_1$ can be solved after reduced to $L_2$?










share|cite|improve this question






















  • How would define the cardinality of an infinite set being larger than another infinite set (both being countable sets)?
    – dkaeae
    Dec 31 '18 at 14:53










  • You can find examples in which $L_1$ is a strict subset of $L_2$ (and vice versa).
    – Yuval Filmus
    Dec 31 '18 at 15:17














3












3








3







I'm reading the definition of polynomial time reducible:




Let $L_1, L_2$ be two language. If $L_1$ is polynomial time reducible to $L_2$ then exists $f:{0,1}^*$ s.t. $forall xin{0,1}^*$ $$xin L_1iff f(x)in L_2$$




For me this means the $L_1$ may be bigger (in cardinality) than $L_2$, but $L_2$ is more difficult since $L_1$ can be solved after reduced to $L_2$?










share|cite|improve this question













I'm reading the definition of polynomial time reducible:




Let $L_1, L_2$ be two language. If $L_1$ is polynomial time reducible to $L_2$ then exists $f:{0,1}^*$ s.t. $forall xin{0,1}^*$ $$xin L_1iff f(x)in L_2$$




For me this means the $L_1$ may be bigger (in cardinality) than $L_2$, but $L_2$ is more difficult since $L_1$ can be solved after reduced to $L_2$?







np-complete reductions decision-problem






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 31 '18 at 14:32









Bit_hcAlgorithmBit_hcAlgorithm

1628




1628












  • How would define the cardinality of an infinite set being larger than another infinite set (both being countable sets)?
    – dkaeae
    Dec 31 '18 at 14:53










  • You can find examples in which $L_1$ is a strict subset of $L_2$ (and vice versa).
    – Yuval Filmus
    Dec 31 '18 at 15:17


















  • How would define the cardinality of an infinite set being larger than another infinite set (both being countable sets)?
    – dkaeae
    Dec 31 '18 at 14:53










  • You can find examples in which $L_1$ is a strict subset of $L_2$ (and vice versa).
    – Yuval Filmus
    Dec 31 '18 at 15:17
















How would define the cardinality of an infinite set being larger than another infinite set (both being countable sets)?
– dkaeae
Dec 31 '18 at 14:53




How would define the cardinality of an infinite set being larger than another infinite set (both being countable sets)?
– dkaeae
Dec 31 '18 at 14:53












You can find examples in which $L_1$ is a strict subset of $L_2$ (and vice versa).
– Yuval Filmus
Dec 31 '18 at 15:17




You can find examples in which $L_1$ is a strict subset of $L_2$ (and vice versa).
– Yuval Filmus
Dec 31 '18 at 15:17










1 Answer
1






active

oldest

votes


















6














$L_1$ and $L_2$ are always countably infinite, and thus "equally big".



If any language is finite, then it is "constant time" recognizable.






share|cite|improve this answer





















  • I forgot this fact that they're both infinite... Thanks!
    – Bit_hcAlgorithm
    Dec 31 '18 at 17:31











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "419"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f102213%2fso-if-a-problem-is-more-difficult-the-language-it-represents-is-smaller%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









6














$L_1$ and $L_2$ are always countably infinite, and thus "equally big".



If any language is finite, then it is "constant time" recognizable.






share|cite|improve this answer





















  • I forgot this fact that they're both infinite... Thanks!
    – Bit_hcAlgorithm
    Dec 31 '18 at 17:31
















6














$L_1$ and $L_2$ are always countably infinite, and thus "equally big".



If any language is finite, then it is "constant time" recognizable.






share|cite|improve this answer





















  • I forgot this fact that they're both infinite... Thanks!
    – Bit_hcAlgorithm
    Dec 31 '18 at 17:31














6












6








6






$L_1$ and $L_2$ are always countably infinite, and thus "equally big".



If any language is finite, then it is "constant time" recognizable.






share|cite|improve this answer












$L_1$ and $L_2$ are always countably infinite, and thus "equally big".



If any language is finite, then it is "constant time" recognizable.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 31 '18 at 14:56









Pål GDPål GD

6,6502241




6,6502241












  • I forgot this fact that they're both infinite... Thanks!
    – Bit_hcAlgorithm
    Dec 31 '18 at 17:31


















  • I forgot this fact that they're both infinite... Thanks!
    – Bit_hcAlgorithm
    Dec 31 '18 at 17:31
















I forgot this fact that they're both infinite... Thanks!
– Bit_hcAlgorithm
Dec 31 '18 at 17:31




I forgot this fact that they're both infinite... Thanks!
– Bit_hcAlgorithm
Dec 31 '18 at 17:31


















draft saved

draft discarded




















































Thanks for contributing an answer to Computer Science Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f102213%2fso-if-a-problem-is-more-difficult-the-language-it-represents-is-smaller%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to change which sound is reproduced for terminal bell?

Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

Can I use Tabulator js library in my java Spring + Thymeleaf project?