The Laplace Transform(s) of a Certain Family of Generalized Hypergeometric Functions
$begingroup$
Using the standard notation for a generalized hypergeometric function, given a non-negative integer $p$, define:
$mathcal{G}_{p}left(xright)={}_{p}F_{p}left(underbrace{frac{1}{2},...,frac{1}{2}}_{ptextrm{ times}};underbrace{frac{3}{2},...,frac{3}{2}}_{ptextrm{ times}};-x^{2}right)$
for all $x$ (in $mathbb{R}$, or in $mathbb{C}$). That is to say (as can be easily shown):
$mathcal{G}_{p}left(xright)=3^{p}sum_{n=0}^{infty}frac{left(-1right)^{n}}{n!}frac{x^{2n}}{left(2n+3right)^{p}}$
This function is integrable in the nicest possible ways (it is a schwartz function, rapidly decreasing, &c., &c....) and, it is analytic everywhere.
I would like to be able to find the laplace transforms ($mathcal{L}left{ mathcal{G}_{p}right} left(sright)
)$ of the $mathcal{G}_{p}$s for every $p$
. At a minimum, I want a closed-form expression for the value of the laplace transforms at $s=1$
; i.e., the value of the integral:
$int_{0}^{infty}mathcal{G}_{p}left(xright)e^{-x}dx$
I cannot do this integration term-by-term, since that leads to a divergent series (and is not valid, due to an absence of uniform convergence of the integrand for $xinmathbb{R}geq0$).
Any ideas?
laplace-transform hypergeometric-function
$endgroup$
add a comment |
$begingroup$
Using the standard notation for a generalized hypergeometric function, given a non-negative integer $p$, define:
$mathcal{G}_{p}left(xright)={}_{p}F_{p}left(underbrace{frac{1}{2},...,frac{1}{2}}_{ptextrm{ times}};underbrace{frac{3}{2},...,frac{3}{2}}_{ptextrm{ times}};-x^{2}right)$
for all $x$ (in $mathbb{R}$, or in $mathbb{C}$). That is to say (as can be easily shown):
$mathcal{G}_{p}left(xright)=3^{p}sum_{n=0}^{infty}frac{left(-1right)^{n}}{n!}frac{x^{2n}}{left(2n+3right)^{p}}$
This function is integrable in the nicest possible ways (it is a schwartz function, rapidly decreasing, &c., &c....) and, it is analytic everywhere.
I would like to be able to find the laplace transforms ($mathcal{L}left{ mathcal{G}_{p}right} left(sright)
)$ of the $mathcal{G}_{p}$s for every $p$
. At a minimum, I want a closed-form expression for the value of the laplace transforms at $s=1$
; i.e., the value of the integral:
$int_{0}^{infty}mathcal{G}_{p}left(xright)e^{-x}dx$
I cannot do this integration term-by-term, since that leads to a divergent series (and is not valid, due to an absence of uniform convergence of the integrand for $xinmathbb{R}geq0$).
Any ideas?
laplace-transform hypergeometric-function
$endgroup$
add a comment |
$begingroup$
Using the standard notation for a generalized hypergeometric function, given a non-negative integer $p$, define:
$mathcal{G}_{p}left(xright)={}_{p}F_{p}left(underbrace{frac{1}{2},...,frac{1}{2}}_{ptextrm{ times}};underbrace{frac{3}{2},...,frac{3}{2}}_{ptextrm{ times}};-x^{2}right)$
for all $x$ (in $mathbb{R}$, or in $mathbb{C}$). That is to say (as can be easily shown):
$mathcal{G}_{p}left(xright)=3^{p}sum_{n=0}^{infty}frac{left(-1right)^{n}}{n!}frac{x^{2n}}{left(2n+3right)^{p}}$
This function is integrable in the nicest possible ways (it is a schwartz function, rapidly decreasing, &c., &c....) and, it is analytic everywhere.
I would like to be able to find the laplace transforms ($mathcal{L}left{ mathcal{G}_{p}right} left(sright)
)$ of the $mathcal{G}_{p}$s for every $p$
. At a minimum, I want a closed-form expression for the value of the laplace transforms at $s=1$
; i.e., the value of the integral:
$int_{0}^{infty}mathcal{G}_{p}left(xright)e^{-x}dx$
I cannot do this integration term-by-term, since that leads to a divergent series (and is not valid, due to an absence of uniform convergence of the integrand for $xinmathbb{R}geq0$).
Any ideas?
laplace-transform hypergeometric-function
$endgroup$
Using the standard notation for a generalized hypergeometric function, given a non-negative integer $p$, define:
$mathcal{G}_{p}left(xright)={}_{p}F_{p}left(underbrace{frac{1}{2},...,frac{1}{2}}_{ptextrm{ times}};underbrace{frac{3}{2},...,frac{3}{2}}_{ptextrm{ times}};-x^{2}right)$
for all $x$ (in $mathbb{R}$, or in $mathbb{C}$). That is to say (as can be easily shown):
$mathcal{G}_{p}left(xright)=3^{p}sum_{n=0}^{infty}frac{left(-1right)^{n}}{n!}frac{x^{2n}}{left(2n+3right)^{p}}$
This function is integrable in the nicest possible ways (it is a schwartz function, rapidly decreasing, &c., &c....) and, it is analytic everywhere.
I would like to be able to find the laplace transforms ($mathcal{L}left{ mathcal{G}_{p}right} left(sright)
)$ of the $mathcal{G}_{p}$s for every $p$
. At a minimum, I want a closed-form expression for the value of the laplace transforms at $s=1$
; i.e., the value of the integral:
$int_{0}^{infty}mathcal{G}_{p}left(xright)e^{-x}dx$
I cannot do this integration term-by-term, since that leads to a divergent series (and is not valid, due to an absence of uniform convergence of the integrand for $xinmathbb{R}geq0$).
Any ideas?
laplace-transform hypergeometric-function
laplace-transform hypergeometric-function
asked Mar 6 '17 at 1:43
MCSMCS
969313
969313
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Following Wang, I would suggest
$$mathcal{L}{mathcal{G}_{p}(x);s}= _{p+1}F_{q}left[begin{matrix}
1, & a_{1}, & dots & ,a_{n} \
& b_{1}, & dots & ,b_{q}
end{matrix};1/sright]$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2173789%2fthe-laplace-transforms-of-a-certain-family-of-generalized-hypergeometric-funct%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Following Wang, I would suggest
$$mathcal{L}{mathcal{G}_{p}(x);s}= _{p+1}F_{q}left[begin{matrix}
1, & a_{1}, & dots & ,a_{n} \
& b_{1}, & dots & ,b_{q}
end{matrix};1/sright]$$
$endgroup$
add a comment |
$begingroup$
Following Wang, I would suggest
$$mathcal{L}{mathcal{G}_{p}(x);s}= _{p+1}F_{q}left[begin{matrix}
1, & a_{1}, & dots & ,a_{n} \
& b_{1}, & dots & ,b_{q}
end{matrix};1/sright]$$
$endgroup$
add a comment |
$begingroup$
Following Wang, I would suggest
$$mathcal{L}{mathcal{G}_{p}(x);s}= _{p+1}F_{q}left[begin{matrix}
1, & a_{1}, & dots & ,a_{n} \
& b_{1}, & dots & ,b_{q}
end{matrix};1/sright]$$
$endgroup$
Following Wang, I would suggest
$$mathcal{L}{mathcal{G}_{p}(x);s}= _{p+1}F_{q}left[begin{matrix}
1, & a_{1}, & dots & ,a_{n} \
& b_{1}, & dots & ,b_{q}
end{matrix};1/sright]$$
answered Nov 27 '18 at 18:00
Rafael Rafael
465
465
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2173789%2fthe-laplace-transforms-of-a-certain-family-of-generalized-hypergeometric-funct%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown