Solve $T'(x)=45-0.75cdot T(x)$, where $T(0)=75$.
$begingroup$
I need help with homework:
Let $T'(x)=45-0.75cdot T(x)$, where $T(0)=75$. Find $T(x)$.
Here is what I have tried:
Let $T(x)=y.$ Rewrite the equation
$$frac{mathrm dy}{mathrm dx}=45-0.75yimplies frac{mathrm dy}{45-0.75y}=mathrm dx$$
Integrate both sides
$$int frac{mathrm dy}{45-0.75y}=int mathrm dx$$
Calculate LHS
$$-frac43ln(45-0.75y)+c=x$$
Now isolate $y$. Divide by "$-frac43$"
$$ln(45-0.75y)+c=-frac34x$$
Raise both sides in "$e$"
$$45-0.75y+c=e^{-frac34x}$$
Subtract $45$ and $c$, divide by "$-0.75$"
$$T(x)=y=frac{e^{-3x/4}-45}{0.75}-c$$
$$T(0)=75implies c=16.33$$
$$T(x)=frac{e^{-3x/4}-45}{0.75}-16.33$$
I know that the true answer is $$T(x)=15e^{-0.75 x}+60$$
However I am unsure on how to get that result.
This is the integral calculator for $1/(45-0,75x)$
integration ordinary-differential-equations derivatives
$endgroup$
add a comment |
$begingroup$
I need help with homework:
Let $T'(x)=45-0.75cdot T(x)$, where $T(0)=75$. Find $T(x)$.
Here is what I have tried:
Let $T(x)=y.$ Rewrite the equation
$$frac{mathrm dy}{mathrm dx}=45-0.75yimplies frac{mathrm dy}{45-0.75y}=mathrm dx$$
Integrate both sides
$$int frac{mathrm dy}{45-0.75y}=int mathrm dx$$
Calculate LHS
$$-frac43ln(45-0.75y)+c=x$$
Now isolate $y$. Divide by "$-frac43$"
$$ln(45-0.75y)+c=-frac34x$$
Raise both sides in "$e$"
$$45-0.75y+c=e^{-frac34x}$$
Subtract $45$ and $c$, divide by "$-0.75$"
$$T(x)=y=frac{e^{-3x/4}-45}{0.75}-c$$
$$T(0)=75implies c=16.33$$
$$T(x)=frac{e^{-3x/4}-45}{0.75}-16.33$$
I know that the true answer is $$T(x)=15e^{-0.75 x}+60$$
However I am unsure on how to get that result.
This is the integral calculator for $1/(45-0,75x)$
integration ordinary-differential-equations derivatives
$endgroup$
$begingroup$
Solve linear diff. equation with constant coefficients $T'+frac34 T=45$
$endgroup$
– Aleksas Domarkas
Nov 24 '18 at 10:35
add a comment |
$begingroup$
I need help with homework:
Let $T'(x)=45-0.75cdot T(x)$, where $T(0)=75$. Find $T(x)$.
Here is what I have tried:
Let $T(x)=y.$ Rewrite the equation
$$frac{mathrm dy}{mathrm dx}=45-0.75yimplies frac{mathrm dy}{45-0.75y}=mathrm dx$$
Integrate both sides
$$int frac{mathrm dy}{45-0.75y}=int mathrm dx$$
Calculate LHS
$$-frac43ln(45-0.75y)+c=x$$
Now isolate $y$. Divide by "$-frac43$"
$$ln(45-0.75y)+c=-frac34x$$
Raise both sides in "$e$"
$$45-0.75y+c=e^{-frac34x}$$
Subtract $45$ and $c$, divide by "$-0.75$"
$$T(x)=y=frac{e^{-3x/4}-45}{0.75}-c$$
$$T(0)=75implies c=16.33$$
$$T(x)=frac{e^{-3x/4}-45}{0.75}-16.33$$
I know that the true answer is $$T(x)=15e^{-0.75 x}+60$$
However I am unsure on how to get that result.
This is the integral calculator for $1/(45-0,75x)$
integration ordinary-differential-equations derivatives
$endgroup$
I need help with homework:
Let $T'(x)=45-0.75cdot T(x)$, where $T(0)=75$. Find $T(x)$.
Here is what I have tried:
Let $T(x)=y.$ Rewrite the equation
$$frac{mathrm dy}{mathrm dx}=45-0.75yimplies frac{mathrm dy}{45-0.75y}=mathrm dx$$
Integrate both sides
$$int frac{mathrm dy}{45-0.75y}=int mathrm dx$$
Calculate LHS
$$-frac43ln(45-0.75y)+c=x$$
Now isolate $y$. Divide by "$-frac43$"
$$ln(45-0.75y)+c=-frac34x$$
Raise both sides in "$e$"
$$45-0.75y+c=e^{-frac34x}$$
Subtract $45$ and $c$, divide by "$-0.75$"
$$T(x)=y=frac{e^{-3x/4}-45}{0.75}-c$$
$$T(0)=75implies c=16.33$$
$$T(x)=frac{e^{-3x/4}-45}{0.75}-16.33$$
I know that the true answer is $$T(x)=15e^{-0.75 x}+60$$
However I am unsure on how to get that result.
This is the integral calculator for $1/(45-0,75x)$
integration ordinary-differential-equations derivatives
integration ordinary-differential-equations derivatives
edited Nov 24 '18 at 12:30
LutzL
56.9k42054
56.9k42054
asked Nov 24 '18 at 10:16
Ryan CameronRyan Cameron
597
597
$begingroup$
Solve linear diff. equation with constant coefficients $T'+frac34 T=45$
$endgroup$
– Aleksas Domarkas
Nov 24 '18 at 10:35
add a comment |
$begingroup$
Solve linear diff. equation with constant coefficients $T'+frac34 T=45$
$endgroup$
– Aleksas Domarkas
Nov 24 '18 at 10:35
$begingroup$
Solve linear diff. equation with constant coefficients $T'+frac34 T=45$
$endgroup$
– Aleksas Domarkas
Nov 24 '18 at 10:35
$begingroup$
Solve linear diff. equation with constant coefficients $T'+frac34 T=45$
$endgroup$
– Aleksas Domarkas
Nov 24 '18 at 10:35
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
I think you missed an absolute value (note that $45-0.75cdot 75<0$).
If we separate the variables, we have that
$$intfrac{dT}{45-0.75cdot T}=int 1dx$$
which gives
$$frac{ln(|45-0.75cdot T|)}{-0.75}=x+c.$$
By letting $T=75$ and $x=0$ we get $c=-ln(45/4)/0.75$.
Can you take it from here?
P.S. As suggested by Aleksas Domarkas, you may also solve the linear ODE with constant coefficients $T′+0.75T=45$ whose general solution is
$$T(x)=Ce^{-0.75 x}+60.$$
Now by using the initial value $T(0)=75$ to find $C=15$ and the solution is
$$T(x)=15e^{-0.75 x}+60.$$
$endgroup$
$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo♦
Nov 24 '18 at 13:08
add a comment |
$begingroup$
Your first grave error is that you used a wrong exponentiation rule. The exponential of $$ln(u)+c$$ is $$e^ccdot u$$ or $$Cu~~text{ with }~~C=pm e^c,$$ not $u+c$ or $u+e^c$ or whatever.
Changing the constant on the fly by incorporating other constant terms, which you do in practically every transformation while isolating $y$, is usually OK. But the number of changes should be kept to a minimum to avoid hard-to-reconstruct errors.
$endgroup$
$begingroup$
Well explained, thanks!
$endgroup$
– Ryan Cameron
Nov 24 '18 at 12:38
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3011389%2fsolve-tx-45-0-75-cdot-tx-where-t0-75%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I think you missed an absolute value (note that $45-0.75cdot 75<0$).
If we separate the variables, we have that
$$intfrac{dT}{45-0.75cdot T}=int 1dx$$
which gives
$$frac{ln(|45-0.75cdot T|)}{-0.75}=x+c.$$
By letting $T=75$ and $x=0$ we get $c=-ln(45/4)/0.75$.
Can you take it from here?
P.S. As suggested by Aleksas Domarkas, you may also solve the linear ODE with constant coefficients $T′+0.75T=45$ whose general solution is
$$T(x)=Ce^{-0.75 x}+60.$$
Now by using the initial value $T(0)=75$ to find $C=15$ and the solution is
$$T(x)=15e^{-0.75 x}+60.$$
$endgroup$
$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo♦
Nov 24 '18 at 13:08
add a comment |
$begingroup$
I think you missed an absolute value (note that $45-0.75cdot 75<0$).
If we separate the variables, we have that
$$intfrac{dT}{45-0.75cdot T}=int 1dx$$
which gives
$$frac{ln(|45-0.75cdot T|)}{-0.75}=x+c.$$
By letting $T=75$ and $x=0$ we get $c=-ln(45/4)/0.75$.
Can you take it from here?
P.S. As suggested by Aleksas Domarkas, you may also solve the linear ODE with constant coefficients $T′+0.75T=45$ whose general solution is
$$T(x)=Ce^{-0.75 x}+60.$$
Now by using the initial value $T(0)=75$ to find $C=15$ and the solution is
$$T(x)=15e^{-0.75 x}+60.$$
$endgroup$
$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo♦
Nov 24 '18 at 13:08
add a comment |
$begingroup$
I think you missed an absolute value (note that $45-0.75cdot 75<0$).
If we separate the variables, we have that
$$intfrac{dT}{45-0.75cdot T}=int 1dx$$
which gives
$$frac{ln(|45-0.75cdot T|)}{-0.75}=x+c.$$
By letting $T=75$ and $x=0$ we get $c=-ln(45/4)/0.75$.
Can you take it from here?
P.S. As suggested by Aleksas Domarkas, you may also solve the linear ODE with constant coefficients $T′+0.75T=45$ whose general solution is
$$T(x)=Ce^{-0.75 x}+60.$$
Now by using the initial value $T(0)=75$ to find $C=15$ and the solution is
$$T(x)=15e^{-0.75 x}+60.$$
$endgroup$
I think you missed an absolute value (note that $45-0.75cdot 75<0$).
If we separate the variables, we have that
$$intfrac{dT}{45-0.75cdot T}=int 1dx$$
which gives
$$frac{ln(|45-0.75cdot T|)}{-0.75}=x+c.$$
By letting $T=75$ and $x=0$ we get $c=-ln(45/4)/0.75$.
Can you take it from here?
P.S. As suggested by Aleksas Domarkas, you may also solve the linear ODE with constant coefficients $T′+0.75T=45$ whose general solution is
$$T(x)=Ce^{-0.75 x}+60.$$
Now by using the initial value $T(0)=75$ to find $C=15$ and the solution is
$$T(x)=15e^{-0.75 x}+60.$$
edited Nov 24 '18 at 11:48
answered Nov 24 '18 at 10:28
Robert ZRobert Z
94.5k1063134
94.5k1063134
$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo♦
Nov 24 '18 at 13:08
add a comment |
$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo♦
Nov 24 '18 at 13:08
$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo♦
Nov 24 '18 at 13:08
$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo♦
Nov 24 '18 at 13:08
add a comment |
$begingroup$
Your first grave error is that you used a wrong exponentiation rule. The exponential of $$ln(u)+c$$ is $$e^ccdot u$$ or $$Cu~~text{ with }~~C=pm e^c,$$ not $u+c$ or $u+e^c$ or whatever.
Changing the constant on the fly by incorporating other constant terms, which you do in practically every transformation while isolating $y$, is usually OK. But the number of changes should be kept to a minimum to avoid hard-to-reconstruct errors.
$endgroup$
$begingroup$
Well explained, thanks!
$endgroup$
– Ryan Cameron
Nov 24 '18 at 12:38
add a comment |
$begingroup$
Your first grave error is that you used a wrong exponentiation rule. The exponential of $$ln(u)+c$$ is $$e^ccdot u$$ or $$Cu~~text{ with }~~C=pm e^c,$$ not $u+c$ or $u+e^c$ or whatever.
Changing the constant on the fly by incorporating other constant terms, which you do in practically every transformation while isolating $y$, is usually OK. But the number of changes should be kept to a minimum to avoid hard-to-reconstruct errors.
$endgroup$
$begingroup$
Well explained, thanks!
$endgroup$
– Ryan Cameron
Nov 24 '18 at 12:38
add a comment |
$begingroup$
Your first grave error is that you used a wrong exponentiation rule. The exponential of $$ln(u)+c$$ is $$e^ccdot u$$ or $$Cu~~text{ with }~~C=pm e^c,$$ not $u+c$ or $u+e^c$ or whatever.
Changing the constant on the fly by incorporating other constant terms, which you do in practically every transformation while isolating $y$, is usually OK. But the number of changes should be kept to a minimum to avoid hard-to-reconstruct errors.
$endgroup$
Your first grave error is that you used a wrong exponentiation rule. The exponential of $$ln(u)+c$$ is $$e^ccdot u$$ or $$Cu~~text{ with }~~C=pm e^c,$$ not $u+c$ or $u+e^c$ or whatever.
Changing the constant on the fly by incorporating other constant terms, which you do in practically every transformation while isolating $y$, is usually OK. But the number of changes should be kept to a minimum to avoid hard-to-reconstruct errors.
answered Nov 24 '18 at 12:36
LutzLLutzL
56.9k42054
56.9k42054
$begingroup$
Well explained, thanks!
$endgroup$
– Ryan Cameron
Nov 24 '18 at 12:38
add a comment |
$begingroup$
Well explained, thanks!
$endgroup$
– Ryan Cameron
Nov 24 '18 at 12:38
$begingroup$
Well explained, thanks!
$endgroup$
– Ryan Cameron
Nov 24 '18 at 12:38
$begingroup$
Well explained, thanks!
$endgroup$
– Ryan Cameron
Nov 24 '18 at 12:38
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3011389%2fsolve-tx-45-0-75-cdot-tx-where-t0-75%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Solve linear diff. equation with constant coefficients $T'+frac34 T=45$
$endgroup$
– Aleksas Domarkas
Nov 24 '18 at 10:35