Showing $sumlimits_{j=0}^M frac{M choose j}{N+M choose j} = frac{N+M+1}{N+1}$












5












$begingroup$


In an answer to another question, I stated $$sumlimits_{j=0}^M frac{M choose j}{N+M choose j} = frac{N+M+1}{N+1}.$$



It is clearly true when $N=0$ since you add up $M+1$ copies of $1$, and when $M=0$ since you add up one copy of $1$. And, for example, with $M=4$ and $N=9$ you get $frac{1}{1}+frac{4}{13}+frac{6}{78}+frac{4}{286}+frac{1}{715} = frac{14}{10}$ as expected.



But how might you approach a general proof?










share|cite|improve this question











$endgroup$

















    5












    $begingroup$


    In an answer to another question, I stated $$sumlimits_{j=0}^M frac{M choose j}{N+M choose j} = frac{N+M+1}{N+1}.$$



    It is clearly true when $N=0$ since you add up $M+1$ copies of $1$, and when $M=0$ since you add up one copy of $1$. And, for example, with $M=4$ and $N=9$ you get $frac{1}{1}+frac{4}{13}+frac{6}{78}+frac{4}{286}+frac{1}{715} = frac{14}{10}$ as expected.



    But how might you approach a general proof?










    share|cite|improve this question











    $endgroup$















      5












      5








      5





      $begingroup$


      In an answer to another question, I stated $$sumlimits_{j=0}^M frac{M choose j}{N+M choose j} = frac{N+M+1}{N+1}.$$



      It is clearly true when $N=0$ since you add up $M+1$ copies of $1$, and when $M=0$ since you add up one copy of $1$. And, for example, with $M=4$ and $N=9$ you get $frac{1}{1}+frac{4}{13}+frac{6}{78}+frac{4}{286}+frac{1}{715} = frac{14}{10}$ as expected.



      But how might you approach a general proof?










      share|cite|improve this question











      $endgroup$




      In an answer to another question, I stated $$sumlimits_{j=0}^M frac{M choose j}{N+M choose j} = frac{N+M+1}{N+1}.$$



      It is clearly true when $N=0$ since you add up $M+1$ copies of $1$, and when $M=0$ since you add up one copy of $1$. And, for example, with $M=4$ and $N=9$ you get $frac{1}{1}+frac{4}{13}+frac{6}{78}+frac{4}{286}+frac{1}{715} = frac{14}{10}$ as expected.



      But how might you approach a general proof?







      combinatorics binomial-coefficients






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 25 '18 at 13:23









      Robert Z

      94.5k1063134




      94.5k1063134










      asked Nov 25 '18 at 13:11









      HenryHenry

      99.1k478164




      99.1k478164






















          2 Answers
          2






          active

          oldest

          votes


















          6












          $begingroup$

          Hint. Note that
          $$frac{M choose j}{N+M choose j}=frac{binom{N+M-j}{N}}{binom{N+M}{N}}.$$
          Hence, we can rewrite the sum as
          $$sum_{j=0}^M frac{M choose j}{N+M choose j}=frac{1}{binom{N+M}{N}}sum_{j=0}^M binom{N+M-j}{N}=frac{1}{binom{N+M}{N}}sum_{i=N}^{N+M} binom{i}{N}.$$
          Finally use the Hockey-stick identity.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            That seems to work well. In my example of $M=4,N=9$ this represents $frac{715}{715}+frac{220}{715}+frac{55}{715}+frac{10}{715}+frac{1}{715} = frac{1001}{715}=frac{14 choose 10}{13 choose 9}=frac{14}{10}$
            $endgroup$
            – Henry
            Nov 25 '18 at 19:09










          • $begingroup$
            @Henry Well done!!
            $endgroup$
            – Robert Z
            Nov 25 '18 at 19:19



















          1












          $begingroup$

          $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
          newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
          newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
          newcommand{dd}{mathrm{d}}
          newcommand{ds}[1]{displaystyle{#1}}
          newcommand{expo}[1]{,mathrm{e}^{#1},}
          newcommand{ic}{mathrm{i}}
          newcommand{mc}[1]{mathcal{#1}}
          newcommand{mrm}[1]{mathrm{#1}}
          newcommand{pars}[1]{left(,{#1},right)}
          newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
          newcommand{root}[2]{,sqrt[#1]{,{#2},},}
          newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
          newcommand{verts}[1]{leftvert,{#1},rightvert}$




          $ds{sum_{j = 0}^{M}{{M choose j} over {N + M choose j}} =
          {N + M + 1 over N + 1}: {LARGE ?}}$
          .




          begin{align}
          sum_{j = 0}^{M}{{M choose j} over {N + M choose j}} & =
          sum_{j = 0}^{M}{M!/bracks{j!pars{M - j}!} over
          pars{N + M}!/bracks{j!pars{N + M - j}!}}
          \[5mm] & =
          {M!, N! over pars{N + M}!}sum_{j = 0}^{M}
          {N + M - j choose M - j}
          \[5mm] & =
          {M!, N! over pars{N + M}!}pars{-1}^{M}
          sum_{j = 0}^{M}pars{-1}^{j}
          bracks{z^{M - j}}pars{1 + z}^{-N - 1}
          \[5mm] & =
          {M!, N! over pars{N + M}!}pars{-1}^{M}
          bracks{z^{M}}pars{1 + z}^{-N - 1},
          {pars{-z}^{M + 1} - 1 over pars{-z} - 1}
          \[5mm] & =
          {M!, N! over pars{N + M}!}pars{-1}^{M}
          bracks{z^{M}}pars{1 + z}^{-N - 2}
          \[5mm] & =
          {M!, N! over pars{N + M}!}pars{-1}^{M}
          braces{{-bracks{-N - 2} + M - 1 choose M}pars{-1}^{M}}
          \[5mm] & = bbx{N + M + 1 over N + 1}
          end{align}






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012811%2fshowing-sum-limits-j-0m-fracm-choose-jnm-choose-j-fracnm1n%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            6












            $begingroup$

            Hint. Note that
            $$frac{M choose j}{N+M choose j}=frac{binom{N+M-j}{N}}{binom{N+M}{N}}.$$
            Hence, we can rewrite the sum as
            $$sum_{j=0}^M frac{M choose j}{N+M choose j}=frac{1}{binom{N+M}{N}}sum_{j=0}^M binom{N+M-j}{N}=frac{1}{binom{N+M}{N}}sum_{i=N}^{N+M} binom{i}{N}.$$
            Finally use the Hockey-stick identity.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              That seems to work well. In my example of $M=4,N=9$ this represents $frac{715}{715}+frac{220}{715}+frac{55}{715}+frac{10}{715}+frac{1}{715} = frac{1001}{715}=frac{14 choose 10}{13 choose 9}=frac{14}{10}$
              $endgroup$
              – Henry
              Nov 25 '18 at 19:09










            • $begingroup$
              @Henry Well done!!
              $endgroup$
              – Robert Z
              Nov 25 '18 at 19:19
















            6












            $begingroup$

            Hint. Note that
            $$frac{M choose j}{N+M choose j}=frac{binom{N+M-j}{N}}{binom{N+M}{N}}.$$
            Hence, we can rewrite the sum as
            $$sum_{j=0}^M frac{M choose j}{N+M choose j}=frac{1}{binom{N+M}{N}}sum_{j=0}^M binom{N+M-j}{N}=frac{1}{binom{N+M}{N}}sum_{i=N}^{N+M} binom{i}{N}.$$
            Finally use the Hockey-stick identity.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              That seems to work well. In my example of $M=4,N=9$ this represents $frac{715}{715}+frac{220}{715}+frac{55}{715}+frac{10}{715}+frac{1}{715} = frac{1001}{715}=frac{14 choose 10}{13 choose 9}=frac{14}{10}$
              $endgroup$
              – Henry
              Nov 25 '18 at 19:09










            • $begingroup$
              @Henry Well done!!
              $endgroup$
              – Robert Z
              Nov 25 '18 at 19:19














            6












            6








            6





            $begingroup$

            Hint. Note that
            $$frac{M choose j}{N+M choose j}=frac{binom{N+M-j}{N}}{binom{N+M}{N}}.$$
            Hence, we can rewrite the sum as
            $$sum_{j=0}^M frac{M choose j}{N+M choose j}=frac{1}{binom{N+M}{N}}sum_{j=0}^M binom{N+M-j}{N}=frac{1}{binom{N+M}{N}}sum_{i=N}^{N+M} binom{i}{N}.$$
            Finally use the Hockey-stick identity.






            share|cite|improve this answer











            $endgroup$



            Hint. Note that
            $$frac{M choose j}{N+M choose j}=frac{binom{N+M-j}{N}}{binom{N+M}{N}}.$$
            Hence, we can rewrite the sum as
            $$sum_{j=0}^M frac{M choose j}{N+M choose j}=frac{1}{binom{N+M}{N}}sum_{j=0}^M binom{N+M-j}{N}=frac{1}{binom{N+M}{N}}sum_{i=N}^{N+M} binom{i}{N}.$$
            Finally use the Hockey-stick identity.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Nov 25 '18 at 19:19

























            answered Nov 25 '18 at 13:16









            Robert ZRobert Z

            94.5k1063134




            94.5k1063134












            • $begingroup$
              That seems to work well. In my example of $M=4,N=9$ this represents $frac{715}{715}+frac{220}{715}+frac{55}{715}+frac{10}{715}+frac{1}{715} = frac{1001}{715}=frac{14 choose 10}{13 choose 9}=frac{14}{10}$
              $endgroup$
              – Henry
              Nov 25 '18 at 19:09










            • $begingroup$
              @Henry Well done!!
              $endgroup$
              – Robert Z
              Nov 25 '18 at 19:19


















            • $begingroup$
              That seems to work well. In my example of $M=4,N=9$ this represents $frac{715}{715}+frac{220}{715}+frac{55}{715}+frac{10}{715}+frac{1}{715} = frac{1001}{715}=frac{14 choose 10}{13 choose 9}=frac{14}{10}$
              $endgroup$
              – Henry
              Nov 25 '18 at 19:09










            • $begingroup$
              @Henry Well done!!
              $endgroup$
              – Robert Z
              Nov 25 '18 at 19:19
















            $begingroup$
            That seems to work well. In my example of $M=4,N=9$ this represents $frac{715}{715}+frac{220}{715}+frac{55}{715}+frac{10}{715}+frac{1}{715} = frac{1001}{715}=frac{14 choose 10}{13 choose 9}=frac{14}{10}$
            $endgroup$
            – Henry
            Nov 25 '18 at 19:09




            $begingroup$
            That seems to work well. In my example of $M=4,N=9$ this represents $frac{715}{715}+frac{220}{715}+frac{55}{715}+frac{10}{715}+frac{1}{715} = frac{1001}{715}=frac{14 choose 10}{13 choose 9}=frac{14}{10}$
            $endgroup$
            – Henry
            Nov 25 '18 at 19:09












            $begingroup$
            @Henry Well done!!
            $endgroup$
            – Robert Z
            Nov 25 '18 at 19:19




            $begingroup$
            @Henry Well done!!
            $endgroup$
            – Robert Z
            Nov 25 '18 at 19:19











            1












            $begingroup$

            $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
            newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
            newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
            newcommand{dd}{mathrm{d}}
            newcommand{ds}[1]{displaystyle{#1}}
            newcommand{expo}[1]{,mathrm{e}^{#1},}
            newcommand{ic}{mathrm{i}}
            newcommand{mc}[1]{mathcal{#1}}
            newcommand{mrm}[1]{mathrm{#1}}
            newcommand{pars}[1]{left(,{#1},right)}
            newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
            newcommand{root}[2]{,sqrt[#1]{,{#2},},}
            newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
            newcommand{verts}[1]{leftvert,{#1},rightvert}$




            $ds{sum_{j = 0}^{M}{{M choose j} over {N + M choose j}} =
            {N + M + 1 over N + 1}: {LARGE ?}}$
            .




            begin{align}
            sum_{j = 0}^{M}{{M choose j} over {N + M choose j}} & =
            sum_{j = 0}^{M}{M!/bracks{j!pars{M - j}!} over
            pars{N + M}!/bracks{j!pars{N + M - j}!}}
            \[5mm] & =
            {M!, N! over pars{N + M}!}sum_{j = 0}^{M}
            {N + M - j choose M - j}
            \[5mm] & =
            {M!, N! over pars{N + M}!}pars{-1}^{M}
            sum_{j = 0}^{M}pars{-1}^{j}
            bracks{z^{M - j}}pars{1 + z}^{-N - 1}
            \[5mm] & =
            {M!, N! over pars{N + M}!}pars{-1}^{M}
            bracks{z^{M}}pars{1 + z}^{-N - 1},
            {pars{-z}^{M + 1} - 1 over pars{-z} - 1}
            \[5mm] & =
            {M!, N! over pars{N + M}!}pars{-1}^{M}
            bracks{z^{M}}pars{1 + z}^{-N - 2}
            \[5mm] & =
            {M!, N! over pars{N + M}!}pars{-1}^{M}
            braces{{-bracks{-N - 2} + M - 1 choose M}pars{-1}^{M}}
            \[5mm] & = bbx{N + M + 1 over N + 1}
            end{align}






            share|cite|improve this answer











            $endgroup$


















              1












              $begingroup$

              $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
              newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
              newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
              newcommand{dd}{mathrm{d}}
              newcommand{ds}[1]{displaystyle{#1}}
              newcommand{expo}[1]{,mathrm{e}^{#1},}
              newcommand{ic}{mathrm{i}}
              newcommand{mc}[1]{mathcal{#1}}
              newcommand{mrm}[1]{mathrm{#1}}
              newcommand{pars}[1]{left(,{#1},right)}
              newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
              newcommand{root}[2]{,sqrt[#1]{,{#2},},}
              newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
              newcommand{verts}[1]{leftvert,{#1},rightvert}$




              $ds{sum_{j = 0}^{M}{{M choose j} over {N + M choose j}} =
              {N + M + 1 over N + 1}: {LARGE ?}}$
              .




              begin{align}
              sum_{j = 0}^{M}{{M choose j} over {N + M choose j}} & =
              sum_{j = 0}^{M}{M!/bracks{j!pars{M - j}!} over
              pars{N + M}!/bracks{j!pars{N + M - j}!}}
              \[5mm] & =
              {M!, N! over pars{N + M}!}sum_{j = 0}^{M}
              {N + M - j choose M - j}
              \[5mm] & =
              {M!, N! over pars{N + M}!}pars{-1}^{M}
              sum_{j = 0}^{M}pars{-1}^{j}
              bracks{z^{M - j}}pars{1 + z}^{-N - 1}
              \[5mm] & =
              {M!, N! over pars{N + M}!}pars{-1}^{M}
              bracks{z^{M}}pars{1 + z}^{-N - 1},
              {pars{-z}^{M + 1} - 1 over pars{-z} - 1}
              \[5mm] & =
              {M!, N! over pars{N + M}!}pars{-1}^{M}
              bracks{z^{M}}pars{1 + z}^{-N - 2}
              \[5mm] & =
              {M!, N! over pars{N + M}!}pars{-1}^{M}
              braces{{-bracks{-N - 2} + M - 1 choose M}pars{-1}^{M}}
              \[5mm] & = bbx{N + M + 1 over N + 1}
              end{align}






              share|cite|improve this answer











              $endgroup$
















                1












                1








                1





                $begingroup$

                $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                newcommand{dd}{mathrm{d}}
                newcommand{ds}[1]{displaystyle{#1}}
                newcommand{expo}[1]{,mathrm{e}^{#1},}
                newcommand{ic}{mathrm{i}}
                newcommand{mc}[1]{mathcal{#1}}
                newcommand{mrm}[1]{mathrm{#1}}
                newcommand{pars}[1]{left(,{#1},right)}
                newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                newcommand{verts}[1]{leftvert,{#1},rightvert}$




                $ds{sum_{j = 0}^{M}{{M choose j} over {N + M choose j}} =
                {N + M + 1 over N + 1}: {LARGE ?}}$
                .




                begin{align}
                sum_{j = 0}^{M}{{M choose j} over {N + M choose j}} & =
                sum_{j = 0}^{M}{M!/bracks{j!pars{M - j}!} over
                pars{N + M}!/bracks{j!pars{N + M - j}!}}
                \[5mm] & =
                {M!, N! over pars{N + M}!}sum_{j = 0}^{M}
                {N + M - j choose M - j}
                \[5mm] & =
                {M!, N! over pars{N + M}!}pars{-1}^{M}
                sum_{j = 0}^{M}pars{-1}^{j}
                bracks{z^{M - j}}pars{1 + z}^{-N - 1}
                \[5mm] & =
                {M!, N! over pars{N + M}!}pars{-1}^{M}
                bracks{z^{M}}pars{1 + z}^{-N - 1},
                {pars{-z}^{M + 1} - 1 over pars{-z} - 1}
                \[5mm] & =
                {M!, N! over pars{N + M}!}pars{-1}^{M}
                bracks{z^{M}}pars{1 + z}^{-N - 2}
                \[5mm] & =
                {M!, N! over pars{N + M}!}pars{-1}^{M}
                braces{{-bracks{-N - 2} + M - 1 choose M}pars{-1}^{M}}
                \[5mm] & = bbx{N + M + 1 over N + 1}
                end{align}






                share|cite|improve this answer











                $endgroup$



                $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                newcommand{dd}{mathrm{d}}
                newcommand{ds}[1]{displaystyle{#1}}
                newcommand{expo}[1]{,mathrm{e}^{#1},}
                newcommand{ic}{mathrm{i}}
                newcommand{mc}[1]{mathcal{#1}}
                newcommand{mrm}[1]{mathrm{#1}}
                newcommand{pars}[1]{left(,{#1},right)}
                newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                newcommand{verts}[1]{leftvert,{#1},rightvert}$




                $ds{sum_{j = 0}^{M}{{M choose j} over {N + M choose j}} =
                {N + M + 1 over N + 1}: {LARGE ?}}$
                .




                begin{align}
                sum_{j = 0}^{M}{{M choose j} over {N + M choose j}} & =
                sum_{j = 0}^{M}{M!/bracks{j!pars{M - j}!} over
                pars{N + M}!/bracks{j!pars{N + M - j}!}}
                \[5mm] & =
                {M!, N! over pars{N + M}!}sum_{j = 0}^{M}
                {N + M - j choose M - j}
                \[5mm] & =
                {M!, N! over pars{N + M}!}pars{-1}^{M}
                sum_{j = 0}^{M}pars{-1}^{j}
                bracks{z^{M - j}}pars{1 + z}^{-N - 1}
                \[5mm] & =
                {M!, N! over pars{N + M}!}pars{-1}^{M}
                bracks{z^{M}}pars{1 + z}^{-N - 1},
                {pars{-z}^{M + 1} - 1 over pars{-z} - 1}
                \[5mm] & =
                {M!, N! over pars{N + M}!}pars{-1}^{M}
                bracks{z^{M}}pars{1 + z}^{-N - 2}
                \[5mm] & =
                {M!, N! over pars{N + M}!}pars{-1}^{M}
                braces{{-bracks{-N - 2} + M - 1 choose M}pars{-1}^{M}}
                \[5mm] & = bbx{N + M + 1 over N + 1}
                end{align}







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Nov 28 '18 at 20:50

























                answered Nov 26 '18 at 21:55









                Felix MarinFelix Marin

                67.4k7107141




                67.4k7107141






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012811%2fshowing-sum-limits-j-0m-fracm-choose-jnm-choose-j-fracnm1n%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    mysqli_query(): Empty query in /home/lucindabrummitt/public_html/blog/wp-includes/wp-db.php on line 1924

                    How to change which sound is reproduced for terminal bell?

                    Can I use Tabulator js library in my java Spring + Thymeleaf project?