Question about a statement concerning normal subgroups
I'm asking the following: it is true that if $K$ is a normal subgroup of $G$ and $Kleq Hleq G$ then $K$ is normal in $H$? I tried to prove it but I failed to do so, so I'm starting to suspect that it is not true. Can you provide me a proof or a counterexample of this statement or hint about its proof?
abstract-algebra group-theory
add a comment |
I'm asking the following: it is true that if $K$ is a normal subgroup of $G$ and $Kleq Hleq G$ then $K$ is normal in $H$? I tried to prove it but I failed to do so, so I'm starting to suspect that it is not true. Can you provide me a proof or a counterexample of this statement or hint about its proof?
abstract-algebra group-theory
add a comment |
I'm asking the following: it is true that if $K$ is a normal subgroup of $G$ and $Kleq Hleq G$ then $K$ is normal in $H$? I tried to prove it but I failed to do so, so I'm starting to suspect that it is not true. Can you provide me a proof or a counterexample of this statement or hint about its proof?
abstract-algebra group-theory
I'm asking the following: it is true that if $K$ is a normal subgroup of $G$ and $Kleq Hleq G$ then $K$ is normal in $H$? I tried to prove it but I failed to do so, so I'm starting to suspect that it is not true. Can you provide me a proof or a counterexample of this statement or hint about its proof?
abstract-algebra group-theory
abstract-algebra group-theory
asked Nov 22 '18 at 17:30
user573497user573497
16619
16619
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
Hint:
You know that
$$;Klhd Gimplies g^{-1}kgin K;,;;text{for all elements};;kin K,,,,gin G;$$
Now, $;Hsubset G; $, so...
add a comment |
It is trivially true because $Ktrianglelefteq G$ is equivalent to $gKg^{-1}=K,,forall gin G$. This condition is met $forall gin H$, as $Hsubset G$. Note we do not need normality of $H$.
1
Oh, now I get it! Since $H$ is a subgroup of $G$ and $gkg^(-1)$ belongs to $K$ for all $g$ in $G$ it also holds for all $h$ in $H$.
– user573497
Nov 22 '18 at 20:02
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009387%2fquestion-about-a-statement-concerning-normal-subgroups%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Hint:
You know that
$$;Klhd Gimplies g^{-1}kgin K;,;;text{for all elements};;kin K,,,,gin G;$$
Now, $;Hsubset G; $, so...
add a comment |
Hint:
You know that
$$;Klhd Gimplies g^{-1}kgin K;,;;text{for all elements};;kin K,,,,gin G;$$
Now, $;Hsubset G; $, so...
add a comment |
Hint:
You know that
$$;Klhd Gimplies g^{-1}kgin K;,;;text{for all elements};;kin K,,,,gin G;$$
Now, $;Hsubset G; $, so...
Hint:
You know that
$$;Klhd Gimplies g^{-1}kgin K;,;;text{for all elements};;kin K,,,,gin G;$$
Now, $;Hsubset G; $, so...
answered Nov 22 '18 at 17:39
DonAntonioDonAntonio
177k1492225
177k1492225
add a comment |
add a comment |
It is trivially true because $Ktrianglelefteq G$ is equivalent to $gKg^{-1}=K,,forall gin G$. This condition is met $forall gin H$, as $Hsubset G$. Note we do not need normality of $H$.
1
Oh, now I get it! Since $H$ is a subgroup of $G$ and $gkg^(-1)$ belongs to $K$ for all $g$ in $G$ it also holds for all $h$ in $H$.
– user573497
Nov 22 '18 at 20:02
add a comment |
It is trivially true because $Ktrianglelefteq G$ is equivalent to $gKg^{-1}=K,,forall gin G$. This condition is met $forall gin H$, as $Hsubset G$. Note we do not need normality of $H$.
1
Oh, now I get it! Since $H$ is a subgroup of $G$ and $gkg^(-1)$ belongs to $K$ for all $g$ in $G$ it also holds for all $h$ in $H$.
– user573497
Nov 22 '18 at 20:02
add a comment |
It is trivially true because $Ktrianglelefteq G$ is equivalent to $gKg^{-1}=K,,forall gin G$. This condition is met $forall gin H$, as $Hsubset G$. Note we do not need normality of $H$.
It is trivially true because $Ktrianglelefteq G$ is equivalent to $gKg^{-1}=K,,forall gin G$. This condition is met $forall gin H$, as $Hsubset G$. Note we do not need normality of $H$.
answered Nov 22 '18 at 17:44
Chris CusterChris Custer
10.9k3824
10.9k3824
1
Oh, now I get it! Since $H$ is a subgroup of $G$ and $gkg^(-1)$ belongs to $K$ for all $g$ in $G$ it also holds for all $h$ in $H$.
– user573497
Nov 22 '18 at 20:02
add a comment |
1
Oh, now I get it! Since $H$ is a subgroup of $G$ and $gkg^(-1)$ belongs to $K$ for all $g$ in $G$ it also holds for all $h$ in $H$.
– user573497
Nov 22 '18 at 20:02
1
1
Oh, now I get it! Since $H$ is a subgroup of $G$ and $gkg^(-1)$ belongs to $K$ for all $g$ in $G$ it also holds for all $h$ in $H$.
– user573497
Nov 22 '18 at 20:02
Oh, now I get it! Since $H$ is a subgroup of $G$ and $gkg^(-1)$ belongs to $K$ for all $g$ in $G$ it also holds for all $h$ in $H$.
– user573497
Nov 22 '18 at 20:02
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009387%2fquestion-about-a-statement-concerning-normal-subgroups%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown