Find a closed walk in a graph that visits every vertex at least once.
Prove that, for all finite connected graph, it is possible to find a closed walk that visits every vertex of the graph at least once.
I have no idea. I've try to prove using minimum spanning tree, but I need a closed walk. Any idea?
graph-theory
add a comment |
Prove that, for all finite connected graph, it is possible to find a closed walk that visits every vertex of the graph at least once.
I have no idea. I've try to prove using minimum spanning tree, but I need a closed walk. Any idea?
graph-theory
add a comment |
Prove that, for all finite connected graph, it is possible to find a closed walk that visits every vertex of the graph at least once.
I have no idea. I've try to prove using minimum spanning tree, but I need a closed walk. Any idea?
graph-theory
Prove that, for all finite connected graph, it is possible to find a closed walk that visits every vertex of the graph at least once.
I have no idea. I've try to prove using minimum spanning tree, but I need a closed walk. Any idea?
graph-theory
graph-theory
asked Nov 22 '18 at 17:58
Pedro SalgadoPedro Salgado
735
735
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Enumerate you vertices $v_1,dots,v_n$. Because $G$ is connected, you can find a path from $v_i$ to $v_{i+1}$ for every $i=1,dots,n-1$. So you construct a path starting at $v_1$, visiting $v_2$, $v_3$, etc., and ending at $v_n$. Now you just go back to $v_1$ to close your tourist tour of the graph.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009424%2ffind-a-closed-walk-in-a-graph-that-visits-every-vertex-at-least-once%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Enumerate you vertices $v_1,dots,v_n$. Because $G$ is connected, you can find a path from $v_i$ to $v_{i+1}$ for every $i=1,dots,n-1$. So you construct a path starting at $v_1$, visiting $v_2$, $v_3$, etc., and ending at $v_n$. Now you just go back to $v_1$ to close your tourist tour of the graph.
add a comment |
Enumerate you vertices $v_1,dots,v_n$. Because $G$ is connected, you can find a path from $v_i$ to $v_{i+1}$ for every $i=1,dots,n-1$. So you construct a path starting at $v_1$, visiting $v_2$, $v_3$, etc., and ending at $v_n$. Now you just go back to $v_1$ to close your tourist tour of the graph.
add a comment |
Enumerate you vertices $v_1,dots,v_n$. Because $G$ is connected, you can find a path from $v_i$ to $v_{i+1}$ for every $i=1,dots,n-1$. So you construct a path starting at $v_1$, visiting $v_2$, $v_3$, etc., and ending at $v_n$. Now you just go back to $v_1$ to close your tourist tour of the graph.
Enumerate you vertices $v_1,dots,v_n$. Because $G$ is connected, you can find a path from $v_i$ to $v_{i+1}$ for every $i=1,dots,n-1$. So you construct a path starting at $v_1$, visiting $v_2$, $v_3$, etc., and ending at $v_n$. Now you just go back to $v_1$ to close your tourist tour of the graph.
edited Nov 22 '18 at 18:53
answered Nov 22 '18 at 18:09
FedericoFederico
4,829514
4,829514
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009424%2ffind-a-closed-walk-in-a-graph-that-visits-every-vertex-at-least-once%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown