A simple question in complex analysis
Why is the contour integral in upper plane different from the lower plane in this case?
$int_{-infty}^{infty} dkfrac{1}{(k-a)(k+a)(p-k-b)(p-k+b)}$
where $text{Im }a$ and $text{Im }b$ are negative and $p$ is real. Besides, $text{Re }a$, $text{Re }b$, and $p$ are positive.
The the poles in complex plane are shown below:
complex-numbers
migrated from physics.stackexchange.com Nov 22 '18 at 16:49
This question came from our site for active researchers, academics and students of physics.
add a comment |
Why is the contour integral in upper plane different from the lower plane in this case?
$int_{-infty}^{infty} dkfrac{1}{(k-a)(k+a)(p-k-b)(p-k+b)}$
where $text{Im }a$ and $text{Im }b$ are negative and $p$ is real. Besides, $text{Re }a$, $text{Re }b$, and $p$ are positive.
The the poles in complex plane are shown below:
complex-numbers
migrated from physics.stackexchange.com Nov 22 '18 at 16:49
This question came from our site for active researchers, academics and students of physics.
2
Did you calculate the residue at each pole?
– G. Smith
Nov 21 '18 at 17:29
3
Would Mathematics be a better home for this question?
– Qmechanic
Nov 21 '18 at 17:36
Yes, I've calculated the residue at each pole. Since I encounter this question in the loop momentum integration, thus I post here.
– James Liu
Nov 21 '18 at 19:11
If I do the contour integral in the upper plane, I will get $-2pi i left(frac{1}{2a[(p-a)^2-b^2]}-frac{1}{2b[(p+b)^2-a^2]}right)$. But if I integrate in the lower plane, I will get $-2pi i left(frac{1}{2a[(p+a)^2-b^2]}-frac{1}{2b[(p-b)^2-a^2]}right)$
– James Liu
Nov 21 '18 at 19:16
add a comment |
Why is the contour integral in upper plane different from the lower plane in this case?
$int_{-infty}^{infty} dkfrac{1}{(k-a)(k+a)(p-k-b)(p-k+b)}$
where $text{Im }a$ and $text{Im }b$ are negative and $p$ is real. Besides, $text{Re }a$, $text{Re }b$, and $p$ are positive.
The the poles in complex plane are shown below:
complex-numbers
Why is the contour integral in upper plane different from the lower plane in this case?
$int_{-infty}^{infty} dkfrac{1}{(k-a)(k+a)(p-k-b)(p-k+b)}$
where $text{Im }a$ and $text{Im }b$ are negative and $p$ is real. Besides, $text{Re }a$, $text{Re }b$, and $p$ are positive.
The the poles in complex plane are shown below:
complex-numbers
complex-numbers
asked Nov 21 '18 at 17:20
James LiuJames Liu
11
11
migrated from physics.stackexchange.com Nov 22 '18 at 16:49
This question came from our site for active researchers, academics and students of physics.
migrated from physics.stackexchange.com Nov 22 '18 at 16:49
This question came from our site for active researchers, academics and students of physics.
2
Did you calculate the residue at each pole?
– G. Smith
Nov 21 '18 at 17:29
3
Would Mathematics be a better home for this question?
– Qmechanic
Nov 21 '18 at 17:36
Yes, I've calculated the residue at each pole. Since I encounter this question in the loop momentum integration, thus I post here.
– James Liu
Nov 21 '18 at 19:11
If I do the contour integral in the upper plane, I will get $-2pi i left(frac{1}{2a[(p-a)^2-b^2]}-frac{1}{2b[(p+b)^2-a^2]}right)$. But if I integrate in the lower plane, I will get $-2pi i left(frac{1}{2a[(p+a)^2-b^2]}-frac{1}{2b[(p-b)^2-a^2]}right)$
– James Liu
Nov 21 '18 at 19:16
add a comment |
2
Did you calculate the residue at each pole?
– G. Smith
Nov 21 '18 at 17:29
3
Would Mathematics be a better home for this question?
– Qmechanic
Nov 21 '18 at 17:36
Yes, I've calculated the residue at each pole. Since I encounter this question in the loop momentum integration, thus I post here.
– James Liu
Nov 21 '18 at 19:11
If I do the contour integral in the upper plane, I will get $-2pi i left(frac{1}{2a[(p-a)^2-b^2]}-frac{1}{2b[(p+b)^2-a^2]}right)$. But if I integrate in the lower plane, I will get $-2pi i left(frac{1}{2a[(p+a)^2-b^2]}-frac{1}{2b[(p-b)^2-a^2]}right)$
– James Liu
Nov 21 '18 at 19:16
2
2
Did you calculate the residue at each pole?
– G. Smith
Nov 21 '18 at 17:29
Did you calculate the residue at each pole?
– G. Smith
Nov 21 '18 at 17:29
3
3
Would Mathematics be a better home for this question?
– Qmechanic
Nov 21 '18 at 17:36
Would Mathematics be a better home for this question?
– Qmechanic
Nov 21 '18 at 17:36
Yes, I've calculated the residue at each pole. Since I encounter this question in the loop momentum integration, thus I post here.
– James Liu
Nov 21 '18 at 19:11
Yes, I've calculated the residue at each pole. Since I encounter this question in the loop momentum integration, thus I post here.
– James Liu
Nov 21 '18 at 19:11
If I do the contour integral in the upper plane, I will get $-2pi i left(frac{1}{2a[(p-a)^2-b^2]}-frac{1}{2b[(p+b)^2-a^2]}right)$. But if I integrate in the lower plane, I will get $-2pi i left(frac{1}{2a[(p+a)^2-b^2]}-frac{1}{2b[(p-b)^2-a^2]}right)$
– James Liu
Nov 21 '18 at 19:16
If I do the contour integral in the upper plane, I will get $-2pi i left(frac{1}{2a[(p-a)^2-b^2]}-frac{1}{2b[(p+b)^2-a^2]}right)$. But if I integrate in the lower plane, I will get $-2pi i left(frac{1}{2a[(p+a)^2-b^2]}-frac{1}{2b[(p-b)^2-a^2]}right)$
– James Liu
Nov 21 '18 at 19:16
add a comment |
1 Answer
1
active
oldest
votes
The integrand vanishes sufficiently fast at large $|k|$ that you can close the contour in either the upper or the lower half-plane. You will get the same answer in either case. In other words, the sum of the residues at the four poles will be zero. Why don't you check that this is indeed true?
Note added: For a general case
$$
frac{1}{(x-a)(x-b)(x-c)(x-d)}
$$
the residue sum is
$$
frac 1{(a - b) (a - c) (a - d)} + frac{1}{(b - a) (b - c) (b - d)} +
frac{1}{(c - a) (c - b) (c - d)} + frac 1{(d - a) (d - b) (d - c)}
$$
A somewhat tedious calculation shows that this sum is zero. A quicker way to see that this must be true is to consider the partial fraction decomposition
$$
frac{1}{(x-a)(x-b)(x-c)(x-d)}=frac{A}{x-a}+ frac{B}{x-b}+frac{C}{x-c}+frac{D}{x-d}
$$
and take the large $x$ limit. Then the LHS is $1/x^4+ O(x^{-5})$ while
$$
RHS= frac{A+B+C+D} x+ O(x^{-2})
$$
Agreement requires $A+B+C+D=0$ togther with similar, but non-trivial-looking, quadratic and cubic relations on the $A,B,C,D$.
the four residues are $frac{1}{2a[(p-a)^2-b^2]}$, $-frac{1}{2b[(p+b)^2-a^2]}$, $-frac{1}{2a[(p+a)^2-b^2]}$, and $frac{1}{2b[(p-b)^2-a^2]}$. Is it correct?
– James Liu
Nov 21 '18 at 19:26
I'm afraid this is not correct. I get these residues by just putting a into the other three denominators (k+a), (p-k-b), (p-k+b). and so do the other three poles p+b, -a, p-b (since each pole is a simple pole). What's the problem?
– James Liu
Nov 21 '18 at 19:35
Thanks for everyone's answer. I've found that the residues exactly cancel each others.
– James Liu
Nov 22 '18 at 8:35
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009346%2fa-simple-question-in-complex-analysis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
The integrand vanishes sufficiently fast at large $|k|$ that you can close the contour in either the upper or the lower half-plane. You will get the same answer in either case. In other words, the sum of the residues at the four poles will be zero. Why don't you check that this is indeed true?
Note added: For a general case
$$
frac{1}{(x-a)(x-b)(x-c)(x-d)}
$$
the residue sum is
$$
frac 1{(a - b) (a - c) (a - d)} + frac{1}{(b - a) (b - c) (b - d)} +
frac{1}{(c - a) (c - b) (c - d)} + frac 1{(d - a) (d - b) (d - c)}
$$
A somewhat tedious calculation shows that this sum is zero. A quicker way to see that this must be true is to consider the partial fraction decomposition
$$
frac{1}{(x-a)(x-b)(x-c)(x-d)}=frac{A}{x-a}+ frac{B}{x-b}+frac{C}{x-c}+frac{D}{x-d}
$$
and take the large $x$ limit. Then the LHS is $1/x^4+ O(x^{-5})$ while
$$
RHS= frac{A+B+C+D} x+ O(x^{-2})
$$
Agreement requires $A+B+C+D=0$ togther with similar, but non-trivial-looking, quadratic and cubic relations on the $A,B,C,D$.
the four residues are $frac{1}{2a[(p-a)^2-b^2]}$, $-frac{1}{2b[(p+b)^2-a^2]}$, $-frac{1}{2a[(p+a)^2-b^2]}$, and $frac{1}{2b[(p-b)^2-a^2]}$. Is it correct?
– James Liu
Nov 21 '18 at 19:26
I'm afraid this is not correct. I get these residues by just putting a into the other three denominators (k+a), (p-k-b), (p-k+b). and so do the other three poles p+b, -a, p-b (since each pole is a simple pole). What's the problem?
– James Liu
Nov 21 '18 at 19:35
Thanks for everyone's answer. I've found that the residues exactly cancel each others.
– James Liu
Nov 22 '18 at 8:35
add a comment |
The integrand vanishes sufficiently fast at large $|k|$ that you can close the contour in either the upper or the lower half-plane. You will get the same answer in either case. In other words, the sum of the residues at the four poles will be zero. Why don't you check that this is indeed true?
Note added: For a general case
$$
frac{1}{(x-a)(x-b)(x-c)(x-d)}
$$
the residue sum is
$$
frac 1{(a - b) (a - c) (a - d)} + frac{1}{(b - a) (b - c) (b - d)} +
frac{1}{(c - a) (c - b) (c - d)} + frac 1{(d - a) (d - b) (d - c)}
$$
A somewhat tedious calculation shows that this sum is zero. A quicker way to see that this must be true is to consider the partial fraction decomposition
$$
frac{1}{(x-a)(x-b)(x-c)(x-d)}=frac{A}{x-a}+ frac{B}{x-b}+frac{C}{x-c}+frac{D}{x-d}
$$
and take the large $x$ limit. Then the LHS is $1/x^4+ O(x^{-5})$ while
$$
RHS= frac{A+B+C+D} x+ O(x^{-2})
$$
Agreement requires $A+B+C+D=0$ togther with similar, but non-trivial-looking, quadratic and cubic relations on the $A,B,C,D$.
the four residues are $frac{1}{2a[(p-a)^2-b^2]}$, $-frac{1}{2b[(p+b)^2-a^2]}$, $-frac{1}{2a[(p+a)^2-b^2]}$, and $frac{1}{2b[(p-b)^2-a^2]}$. Is it correct?
– James Liu
Nov 21 '18 at 19:26
I'm afraid this is not correct. I get these residues by just putting a into the other three denominators (k+a), (p-k-b), (p-k+b). and so do the other three poles p+b, -a, p-b (since each pole is a simple pole). What's the problem?
– James Liu
Nov 21 '18 at 19:35
Thanks for everyone's answer. I've found that the residues exactly cancel each others.
– James Liu
Nov 22 '18 at 8:35
add a comment |
The integrand vanishes sufficiently fast at large $|k|$ that you can close the contour in either the upper or the lower half-plane. You will get the same answer in either case. In other words, the sum of the residues at the four poles will be zero. Why don't you check that this is indeed true?
Note added: For a general case
$$
frac{1}{(x-a)(x-b)(x-c)(x-d)}
$$
the residue sum is
$$
frac 1{(a - b) (a - c) (a - d)} + frac{1}{(b - a) (b - c) (b - d)} +
frac{1}{(c - a) (c - b) (c - d)} + frac 1{(d - a) (d - b) (d - c)}
$$
A somewhat tedious calculation shows that this sum is zero. A quicker way to see that this must be true is to consider the partial fraction decomposition
$$
frac{1}{(x-a)(x-b)(x-c)(x-d)}=frac{A}{x-a}+ frac{B}{x-b}+frac{C}{x-c}+frac{D}{x-d}
$$
and take the large $x$ limit. Then the LHS is $1/x^4+ O(x^{-5})$ while
$$
RHS= frac{A+B+C+D} x+ O(x^{-2})
$$
Agreement requires $A+B+C+D=0$ togther with similar, but non-trivial-looking, quadratic and cubic relations on the $A,B,C,D$.
The integrand vanishes sufficiently fast at large $|k|$ that you can close the contour in either the upper or the lower half-plane. You will get the same answer in either case. In other words, the sum of the residues at the four poles will be zero. Why don't you check that this is indeed true?
Note added: For a general case
$$
frac{1}{(x-a)(x-b)(x-c)(x-d)}
$$
the residue sum is
$$
frac 1{(a - b) (a - c) (a - d)} + frac{1}{(b - a) (b - c) (b - d)} +
frac{1}{(c - a) (c - b) (c - d)} + frac 1{(d - a) (d - b) (d - c)}
$$
A somewhat tedious calculation shows that this sum is zero. A quicker way to see that this must be true is to consider the partial fraction decomposition
$$
frac{1}{(x-a)(x-b)(x-c)(x-d)}=frac{A}{x-a}+ frac{B}{x-b}+frac{C}{x-c}+frac{D}{x-d}
$$
and take the large $x$ limit. Then the LHS is $1/x^4+ O(x^{-5})$ while
$$
RHS= frac{A+B+C+D} x+ O(x^{-2})
$$
Agreement requires $A+B+C+D=0$ togther with similar, but non-trivial-looking, quadratic and cubic relations on the $A,B,C,D$.
answered Nov 21 '18 at 19:17
mike stonemike stone
30817
30817
the four residues are $frac{1}{2a[(p-a)^2-b^2]}$, $-frac{1}{2b[(p+b)^2-a^2]}$, $-frac{1}{2a[(p+a)^2-b^2]}$, and $frac{1}{2b[(p-b)^2-a^2]}$. Is it correct?
– James Liu
Nov 21 '18 at 19:26
I'm afraid this is not correct. I get these residues by just putting a into the other three denominators (k+a), (p-k-b), (p-k+b). and so do the other three poles p+b, -a, p-b (since each pole is a simple pole). What's the problem?
– James Liu
Nov 21 '18 at 19:35
Thanks for everyone's answer. I've found that the residues exactly cancel each others.
– James Liu
Nov 22 '18 at 8:35
add a comment |
the four residues are $frac{1}{2a[(p-a)^2-b^2]}$, $-frac{1}{2b[(p+b)^2-a^2]}$, $-frac{1}{2a[(p+a)^2-b^2]}$, and $frac{1}{2b[(p-b)^2-a^2]}$. Is it correct?
– James Liu
Nov 21 '18 at 19:26
I'm afraid this is not correct. I get these residues by just putting a into the other three denominators (k+a), (p-k-b), (p-k+b). and so do the other three poles p+b, -a, p-b (since each pole is a simple pole). What's the problem?
– James Liu
Nov 21 '18 at 19:35
Thanks for everyone's answer. I've found that the residues exactly cancel each others.
– James Liu
Nov 22 '18 at 8:35
the four residues are $frac{1}{2a[(p-a)^2-b^2]}$, $-frac{1}{2b[(p+b)^2-a^2]}$, $-frac{1}{2a[(p+a)^2-b^2]}$, and $frac{1}{2b[(p-b)^2-a^2]}$. Is it correct?
– James Liu
Nov 21 '18 at 19:26
the four residues are $frac{1}{2a[(p-a)^2-b^2]}$, $-frac{1}{2b[(p+b)^2-a^2]}$, $-frac{1}{2a[(p+a)^2-b^2]}$, and $frac{1}{2b[(p-b)^2-a^2]}$. Is it correct?
– James Liu
Nov 21 '18 at 19:26
I'm afraid this is not correct. I get these residues by just putting a into the other three denominators (k+a), (p-k-b), (p-k+b). and so do the other three poles p+b, -a, p-b (since each pole is a simple pole). What's the problem?
– James Liu
Nov 21 '18 at 19:35
I'm afraid this is not correct. I get these residues by just putting a into the other three denominators (k+a), (p-k-b), (p-k+b). and so do the other three poles p+b, -a, p-b (since each pole is a simple pole). What's the problem?
– James Liu
Nov 21 '18 at 19:35
Thanks for everyone's answer. I've found that the residues exactly cancel each others.
– James Liu
Nov 22 '18 at 8:35
Thanks for everyone's answer. I've found that the residues exactly cancel each others.
– James Liu
Nov 22 '18 at 8:35
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009346%2fa-simple-question-in-complex-analysis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
Did you calculate the residue at each pole?
– G. Smith
Nov 21 '18 at 17:29
3
Would Mathematics be a better home for this question?
– Qmechanic
Nov 21 '18 at 17:36
Yes, I've calculated the residue at each pole. Since I encounter this question in the loop momentum integration, thus I post here.
– James Liu
Nov 21 '18 at 19:11
If I do the contour integral in the upper plane, I will get $-2pi i left(frac{1}{2a[(p-a)^2-b^2]}-frac{1}{2b[(p+b)^2-a^2]}right)$. But if I integrate in the lower plane, I will get $-2pi i left(frac{1}{2a[(p+a)^2-b^2]}-frac{1}{2b[(p-b)^2-a^2]}right)$
– James Liu
Nov 21 '18 at 19:16