difference of two independent exponentially distributed random variables
Let $X_1,X_2,X_3$ be independent $Exp(lambda)$ distributed random variables. I need to find $P(X_1<X_2<X_3)$.
I think we need to use independence, then we can rewrite $P(X_1<X_2<X_3)=P(X_1<X_2)P(X_2<X_3)$, but I don't know how to proceed next. Maybe considering $Y=X_1-X_2$, but then we need to find the distribution of Y, which is hard for me.
Any help would be appreciated, thanks.
probability
add a comment |
Let $X_1,X_2,X_3$ be independent $Exp(lambda)$ distributed random variables. I need to find $P(X_1<X_2<X_3)$.
I think we need to use independence, then we can rewrite $P(X_1<X_2<X_3)=P(X_1<X_2)P(X_2<X_3)$, but I don't know how to proceed next. Maybe considering $Y=X_1-X_2$, but then we need to find the distribution of Y, which is hard for me.
Any help would be appreciated, thanks.
probability
add a comment |
Let $X_1,X_2,X_3$ be independent $Exp(lambda)$ distributed random variables. I need to find $P(X_1<X_2<X_3)$.
I think we need to use independence, then we can rewrite $P(X_1<X_2<X_3)=P(X_1<X_2)P(X_2<X_3)$, but I don't know how to proceed next. Maybe considering $Y=X_1-X_2$, but then we need to find the distribution of Y, which is hard for me.
Any help would be appreciated, thanks.
probability
Let $X_1,X_2,X_3$ be independent $Exp(lambda)$ distributed random variables. I need to find $P(X_1<X_2<X_3)$.
I think we need to use independence, then we can rewrite $P(X_1<X_2<X_3)=P(X_1<X_2)P(X_2<X_3)$, but I don't know how to proceed next. Maybe considering $Y=X_1-X_2$, but then we need to find the distribution of Y, which is hard for me.
Any help would be appreciated, thanks.
probability
probability
asked Nov 22 '18 at 17:15
dxdydzdxdydz
1949
1949
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
By symmetry,
we have
begin{align}P(X_1<X_2<X_3)&=P(X_1<X_3<X_2)\&=P(X_2<X_1<X_3)\ &=P(X_2<X_3<X_1)\ &=P(X_3<X_1<X_2)\ &=P(X_3<X_2<X_1)\ end{align}
Since they have to sum up to $1$, $$P(X_1<X_2<X_3)=frac16$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009372%2fdifference-of-two-independent-exponentially-distributed-random-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
By symmetry,
we have
begin{align}P(X_1<X_2<X_3)&=P(X_1<X_3<X_2)\&=P(X_2<X_1<X_3)\ &=P(X_2<X_3<X_1)\ &=P(X_3<X_1<X_2)\ &=P(X_3<X_2<X_1)\ end{align}
Since they have to sum up to $1$, $$P(X_1<X_2<X_3)=frac16$$
add a comment |
By symmetry,
we have
begin{align}P(X_1<X_2<X_3)&=P(X_1<X_3<X_2)\&=P(X_2<X_1<X_3)\ &=P(X_2<X_3<X_1)\ &=P(X_3<X_1<X_2)\ &=P(X_3<X_2<X_1)\ end{align}
Since they have to sum up to $1$, $$P(X_1<X_2<X_3)=frac16$$
add a comment |
By symmetry,
we have
begin{align}P(X_1<X_2<X_3)&=P(X_1<X_3<X_2)\&=P(X_2<X_1<X_3)\ &=P(X_2<X_3<X_1)\ &=P(X_3<X_1<X_2)\ &=P(X_3<X_2<X_1)\ end{align}
Since they have to sum up to $1$, $$P(X_1<X_2<X_3)=frac16$$
By symmetry,
we have
begin{align}P(X_1<X_2<X_3)&=P(X_1<X_3<X_2)\&=P(X_2<X_1<X_3)\ &=P(X_2<X_3<X_1)\ &=P(X_3<X_1<X_2)\ &=P(X_3<X_2<X_1)\ end{align}
Since they have to sum up to $1$, $$P(X_1<X_2<X_3)=frac16$$
answered Nov 22 '18 at 17:32
Siong Thye GohSiong Thye Goh
99.6k1464117
99.6k1464117
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009372%2fdifference-of-two-independent-exponentially-distributed-random-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown