Prove that $sum^n_{k=0}frac{(-1)^k}{k+x}binom{n}{k}=frac{n!}{x(x+1)cdots(x+n)}$.
Given the following formula
$$
sum^n_{k=0}frac{(-1)^k}{k+x}binom{n}{k},.
$$
How can I show that this is equal to
$$
frac{n!}{x(x+1)cdots(x+n)},?
$$
summation factorial partial-fractions rational-functions
add a comment |
Given the following formula
$$
sum^n_{k=0}frac{(-1)^k}{k+x}binom{n}{k},.
$$
How can I show that this is equal to
$$
frac{n!}{x(x+1)cdots(x+n)},?
$$
summation factorial partial-fractions rational-functions
1
Both functions have the same simple poles, with the same residues. Or you may just use induction on $n$.
– Jack D'Aurizio
Nov 19 '18 at 16:10
One of several links that you may consult is at this MSE post.
– Marko Riedel
Nov 19 '18 at 16:39
Or alternatively, this MSE post II.
– Marko Riedel
Nov 19 '18 at 16:47
add a comment |
Given the following formula
$$
sum^n_{k=0}frac{(-1)^k}{k+x}binom{n}{k},.
$$
How can I show that this is equal to
$$
frac{n!}{x(x+1)cdots(x+n)},?
$$
summation factorial partial-fractions rational-functions
Given the following formula
$$
sum^n_{k=0}frac{(-1)^k}{k+x}binom{n}{k},.
$$
How can I show that this is equal to
$$
frac{n!}{x(x+1)cdots(x+n)},?
$$
summation factorial partial-fractions rational-functions
summation factorial partial-fractions rational-functions
edited Nov 22 '18 at 17:12
Batominovski
34k33294
34k33294
asked Nov 19 '18 at 15:51
RedPenRedPen
212112
212112
1
Both functions have the same simple poles, with the same residues. Or you may just use induction on $n$.
– Jack D'Aurizio
Nov 19 '18 at 16:10
One of several links that you may consult is at this MSE post.
– Marko Riedel
Nov 19 '18 at 16:39
Or alternatively, this MSE post II.
– Marko Riedel
Nov 19 '18 at 16:47
add a comment |
1
Both functions have the same simple poles, with the same residues. Or you may just use induction on $n$.
– Jack D'Aurizio
Nov 19 '18 at 16:10
One of several links that you may consult is at this MSE post.
– Marko Riedel
Nov 19 '18 at 16:39
Or alternatively, this MSE post II.
– Marko Riedel
Nov 19 '18 at 16:47
1
1
Both functions have the same simple poles, with the same residues. Or you may just use induction on $n$.
– Jack D'Aurizio
Nov 19 '18 at 16:10
Both functions have the same simple poles, with the same residues. Or you may just use induction on $n$.
– Jack D'Aurizio
Nov 19 '18 at 16:10
One of several links that you may consult is at this MSE post.
– Marko Riedel
Nov 19 '18 at 16:39
One of several links that you may consult is at this MSE post.
– Marko Riedel
Nov 19 '18 at 16:39
Or alternatively, this MSE post II.
– Marko Riedel
Nov 19 '18 at 16:47
Or alternatively, this MSE post II.
– Marko Riedel
Nov 19 '18 at 16:47
add a comment |
3 Answers
3
active
oldest
votes
Induction step:
$$begin{align}
sum_{k=0}^{n+1}&frac{(-1)^k}{x+k}binom{n+1}k=frac1x+frac{(-1)^{n+1}}{x+n+1}+sum_{k=1}^{n}frac{(-1)^k}{x+k}left[binom nk+binom n{k-1}right]
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}+sum_{k=1}^{n}frac{(-1)^k}{x+k}binom{n}{k-1}
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}-sum_{k=0}^{n-1}frac{(-1)^k}{(x+1)+k}binom{n}{k}
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}-frac{n!}{(x+1)(x+2)cdots(x+n+1)}+frac{(-1)^n}{x+n+1}
\&=frac{n!(x+n+1)-n!x}{x(x+1)cdots(x+n+1)}=frac{(n+1)!}{x(x+1)cdots(x+n+1)}
end{align}$$
add a comment |
Consider the (unique) polynomial $p(x)inmathbb{Q}[x]$ of degree at most $n$ such that $p(-k)=1$ for all $k=0,1,2,ldots,n$. Clearly, $p(x)$ is the constant polynomial $1$.
However, using Lagrange interpolation, we have
$$p(x)=sum_{k=0}^n,p(-k),frac{prodlimits_{jin[n]setminus{k}},(x+j)}{prodlimits_{jin[n]setminus{k}},(-k+j)},,$$
where $[n]:={0,1,2,ldots,n}$. This means
$$1=sum_{k=0}^n,frac{prodlimits_{jin[n]setminus{k}},(x+j)}{prodlimits_{jin[n]setminus{k}},(-k+j)}=sum_{k=0}^n,(-1)^k,frac{prodlimits_{jin[n]setminus{k}},(x+j)}{k!,(n-k)!},.$$
Multiplying both sides by $dfrac{n!}{prodlimits_{jin[n]},(x+j)}$ yields
$$frac{n!}{prodlimits_{j=0}^n,(x+j)}=sum_{k=0}^n,(-1)^k,left(frac{n!}{k!,(n-k)!}right),frac{1}{x+k}=sum_{k=0}^n,binom{n}{k},frac{(-1)^k}{x+k},.$$
add a comment |
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
With $ds{Repars{x} > 0}$:
begin{align}
&bbox[10px,#ffd]{sum_{k = 0}^{n}{pars{-1}^{k} over k + x}{n choose k}} =
sum_{k = 0}^{n}pars{-1}^{k}
pars{int_{0}^{1}t^{k + x - 1},dd t}{n choose k}
\[5mm] = &
int_{0}^{1}t^{x - 1}sum_{k = 0}^{n}
{n choose k}pars{-t}^{k},dd t
\[5mm] = &
int_{0}^{1}t^{x - 1},pars{1 - t}^{n},dd t =
mrm{B}pars{x,n + 1} pars{~mrm{B}: Beta Function~}
\[5mm] = &
{Gammapars{x}Gammapars{n + 1} over Gammapars{x + n + 1}}
phantom{= mrm{B}pars{x,n + 1},,,,,,,,,,,,}
pars{~Gamma: Gamma Function~}
\[5mm] = &
{n! over Gammapars{x + n + 1}/Gammapars{x}} =
{n! over x^{overline{n +1}}} =
bbx{n! over xpars{x + 1}cdotspars{x + n}}
end{align}
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005100%2fprove-that-sumn-k-0-frac-1kkx-binomnk-fracnxx1-cdotsx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
Induction step:
$$begin{align}
sum_{k=0}^{n+1}&frac{(-1)^k}{x+k}binom{n+1}k=frac1x+frac{(-1)^{n+1}}{x+n+1}+sum_{k=1}^{n}frac{(-1)^k}{x+k}left[binom nk+binom n{k-1}right]
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}+sum_{k=1}^{n}frac{(-1)^k}{x+k}binom{n}{k-1}
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}-sum_{k=0}^{n-1}frac{(-1)^k}{(x+1)+k}binom{n}{k}
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}-frac{n!}{(x+1)(x+2)cdots(x+n+1)}+frac{(-1)^n}{x+n+1}
\&=frac{n!(x+n+1)-n!x}{x(x+1)cdots(x+n+1)}=frac{(n+1)!}{x(x+1)cdots(x+n+1)}
end{align}$$
add a comment |
Induction step:
$$begin{align}
sum_{k=0}^{n+1}&frac{(-1)^k}{x+k}binom{n+1}k=frac1x+frac{(-1)^{n+1}}{x+n+1}+sum_{k=1}^{n}frac{(-1)^k}{x+k}left[binom nk+binom n{k-1}right]
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}+sum_{k=1}^{n}frac{(-1)^k}{x+k}binom{n}{k-1}
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}-sum_{k=0}^{n-1}frac{(-1)^k}{(x+1)+k}binom{n}{k}
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}-frac{n!}{(x+1)(x+2)cdots(x+n+1)}+frac{(-1)^n}{x+n+1}
\&=frac{n!(x+n+1)-n!x}{x(x+1)cdots(x+n+1)}=frac{(n+1)!}{x(x+1)cdots(x+n+1)}
end{align}$$
add a comment |
Induction step:
$$begin{align}
sum_{k=0}^{n+1}&frac{(-1)^k}{x+k}binom{n+1}k=frac1x+frac{(-1)^{n+1}}{x+n+1}+sum_{k=1}^{n}frac{(-1)^k}{x+k}left[binom nk+binom n{k-1}right]
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}+sum_{k=1}^{n}frac{(-1)^k}{x+k}binom{n}{k-1}
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}-sum_{k=0}^{n-1}frac{(-1)^k}{(x+1)+k}binom{n}{k}
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}-frac{n!}{(x+1)(x+2)cdots(x+n+1)}+frac{(-1)^n}{x+n+1}
\&=frac{n!(x+n+1)-n!x}{x(x+1)cdots(x+n+1)}=frac{(n+1)!}{x(x+1)cdots(x+n+1)}
end{align}$$
Induction step:
$$begin{align}
sum_{k=0}^{n+1}&frac{(-1)^k}{x+k}binom{n+1}k=frac1x+frac{(-1)^{n+1}}{x+n+1}+sum_{k=1}^{n}frac{(-1)^k}{x+k}left[binom nk+binom n{k-1}right]
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}+sum_{k=1}^{n}frac{(-1)^k}{x+k}binom{n}{k-1}
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}-sum_{k=0}^{n-1}frac{(-1)^k}{(x+1)+k}binom{n}{k}
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}-frac{n!}{(x+1)(x+2)cdots(x+n+1)}+frac{(-1)^n}{x+n+1}
\&=frac{n!(x+n+1)-n!x}{x(x+1)cdots(x+n+1)}=frac{(n+1)!}{x(x+1)cdots(x+n+1)}
end{align}$$
edited Nov 27 '18 at 19:39
darij grinberg
10.2k33062
10.2k33062
answered Nov 19 '18 at 16:35
ajotatxeajotatxe
53.5k23890
53.5k23890
add a comment |
add a comment |
Consider the (unique) polynomial $p(x)inmathbb{Q}[x]$ of degree at most $n$ such that $p(-k)=1$ for all $k=0,1,2,ldots,n$. Clearly, $p(x)$ is the constant polynomial $1$.
However, using Lagrange interpolation, we have
$$p(x)=sum_{k=0}^n,p(-k),frac{prodlimits_{jin[n]setminus{k}},(x+j)}{prodlimits_{jin[n]setminus{k}},(-k+j)},,$$
where $[n]:={0,1,2,ldots,n}$. This means
$$1=sum_{k=0}^n,frac{prodlimits_{jin[n]setminus{k}},(x+j)}{prodlimits_{jin[n]setminus{k}},(-k+j)}=sum_{k=0}^n,(-1)^k,frac{prodlimits_{jin[n]setminus{k}},(x+j)}{k!,(n-k)!},.$$
Multiplying both sides by $dfrac{n!}{prodlimits_{jin[n]},(x+j)}$ yields
$$frac{n!}{prodlimits_{j=0}^n,(x+j)}=sum_{k=0}^n,(-1)^k,left(frac{n!}{k!,(n-k)!}right),frac{1}{x+k}=sum_{k=0}^n,binom{n}{k},frac{(-1)^k}{x+k},.$$
add a comment |
Consider the (unique) polynomial $p(x)inmathbb{Q}[x]$ of degree at most $n$ such that $p(-k)=1$ for all $k=0,1,2,ldots,n$. Clearly, $p(x)$ is the constant polynomial $1$.
However, using Lagrange interpolation, we have
$$p(x)=sum_{k=0}^n,p(-k),frac{prodlimits_{jin[n]setminus{k}},(x+j)}{prodlimits_{jin[n]setminus{k}},(-k+j)},,$$
where $[n]:={0,1,2,ldots,n}$. This means
$$1=sum_{k=0}^n,frac{prodlimits_{jin[n]setminus{k}},(x+j)}{prodlimits_{jin[n]setminus{k}},(-k+j)}=sum_{k=0}^n,(-1)^k,frac{prodlimits_{jin[n]setminus{k}},(x+j)}{k!,(n-k)!},.$$
Multiplying both sides by $dfrac{n!}{prodlimits_{jin[n]},(x+j)}$ yields
$$frac{n!}{prodlimits_{j=0}^n,(x+j)}=sum_{k=0}^n,(-1)^k,left(frac{n!}{k!,(n-k)!}right),frac{1}{x+k}=sum_{k=0}^n,binom{n}{k},frac{(-1)^k}{x+k},.$$
add a comment |
Consider the (unique) polynomial $p(x)inmathbb{Q}[x]$ of degree at most $n$ such that $p(-k)=1$ for all $k=0,1,2,ldots,n$. Clearly, $p(x)$ is the constant polynomial $1$.
However, using Lagrange interpolation, we have
$$p(x)=sum_{k=0}^n,p(-k),frac{prodlimits_{jin[n]setminus{k}},(x+j)}{prodlimits_{jin[n]setminus{k}},(-k+j)},,$$
where $[n]:={0,1,2,ldots,n}$. This means
$$1=sum_{k=0}^n,frac{prodlimits_{jin[n]setminus{k}},(x+j)}{prodlimits_{jin[n]setminus{k}},(-k+j)}=sum_{k=0}^n,(-1)^k,frac{prodlimits_{jin[n]setminus{k}},(x+j)}{k!,(n-k)!},.$$
Multiplying both sides by $dfrac{n!}{prodlimits_{jin[n]},(x+j)}$ yields
$$frac{n!}{prodlimits_{j=0}^n,(x+j)}=sum_{k=0}^n,(-1)^k,left(frac{n!}{k!,(n-k)!}right),frac{1}{x+k}=sum_{k=0}^n,binom{n}{k},frac{(-1)^k}{x+k},.$$
Consider the (unique) polynomial $p(x)inmathbb{Q}[x]$ of degree at most $n$ such that $p(-k)=1$ for all $k=0,1,2,ldots,n$. Clearly, $p(x)$ is the constant polynomial $1$.
However, using Lagrange interpolation, we have
$$p(x)=sum_{k=0}^n,p(-k),frac{prodlimits_{jin[n]setminus{k}},(x+j)}{prodlimits_{jin[n]setminus{k}},(-k+j)},,$$
where $[n]:={0,1,2,ldots,n}$. This means
$$1=sum_{k=0}^n,frac{prodlimits_{jin[n]setminus{k}},(x+j)}{prodlimits_{jin[n]setminus{k}},(-k+j)}=sum_{k=0}^n,(-1)^k,frac{prodlimits_{jin[n]setminus{k}},(x+j)}{k!,(n-k)!},.$$
Multiplying both sides by $dfrac{n!}{prodlimits_{jin[n]},(x+j)}$ yields
$$frac{n!}{prodlimits_{j=0}^n,(x+j)}=sum_{k=0}^n,(-1)^k,left(frac{n!}{k!,(n-k)!}right),frac{1}{x+k}=sum_{k=0}^n,binom{n}{k},frac{(-1)^k}{x+k},.$$
edited Nov 27 '18 at 19:42
darij grinberg
10.2k33062
10.2k33062
answered Nov 22 '18 at 17:11
BatominovskiBatominovski
34k33294
34k33294
add a comment |
add a comment |
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
With $ds{Repars{x} > 0}$:
begin{align}
&bbox[10px,#ffd]{sum_{k = 0}^{n}{pars{-1}^{k} over k + x}{n choose k}} =
sum_{k = 0}^{n}pars{-1}^{k}
pars{int_{0}^{1}t^{k + x - 1},dd t}{n choose k}
\[5mm] = &
int_{0}^{1}t^{x - 1}sum_{k = 0}^{n}
{n choose k}pars{-t}^{k},dd t
\[5mm] = &
int_{0}^{1}t^{x - 1},pars{1 - t}^{n},dd t =
mrm{B}pars{x,n + 1} pars{~mrm{B}: Beta Function~}
\[5mm] = &
{Gammapars{x}Gammapars{n + 1} over Gammapars{x + n + 1}}
phantom{= mrm{B}pars{x,n + 1},,,,,,,,,,,,}
pars{~Gamma: Gamma Function~}
\[5mm] = &
{n! over Gammapars{x + n + 1}/Gammapars{x}} =
{n! over x^{overline{n +1}}} =
bbx{n! over xpars{x + 1}cdotspars{x + n}}
end{align}
add a comment |
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
With $ds{Repars{x} > 0}$:
begin{align}
&bbox[10px,#ffd]{sum_{k = 0}^{n}{pars{-1}^{k} over k + x}{n choose k}} =
sum_{k = 0}^{n}pars{-1}^{k}
pars{int_{0}^{1}t^{k + x - 1},dd t}{n choose k}
\[5mm] = &
int_{0}^{1}t^{x - 1}sum_{k = 0}^{n}
{n choose k}pars{-t}^{k},dd t
\[5mm] = &
int_{0}^{1}t^{x - 1},pars{1 - t}^{n},dd t =
mrm{B}pars{x,n + 1} pars{~mrm{B}: Beta Function~}
\[5mm] = &
{Gammapars{x}Gammapars{n + 1} over Gammapars{x + n + 1}}
phantom{= mrm{B}pars{x,n + 1},,,,,,,,,,,,}
pars{~Gamma: Gamma Function~}
\[5mm] = &
{n! over Gammapars{x + n + 1}/Gammapars{x}} =
{n! over x^{overline{n +1}}} =
bbx{n! over xpars{x + 1}cdotspars{x + n}}
end{align}
add a comment |
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
With $ds{Repars{x} > 0}$:
begin{align}
&bbox[10px,#ffd]{sum_{k = 0}^{n}{pars{-1}^{k} over k + x}{n choose k}} =
sum_{k = 0}^{n}pars{-1}^{k}
pars{int_{0}^{1}t^{k + x - 1},dd t}{n choose k}
\[5mm] = &
int_{0}^{1}t^{x - 1}sum_{k = 0}^{n}
{n choose k}pars{-t}^{k},dd t
\[5mm] = &
int_{0}^{1}t^{x - 1},pars{1 - t}^{n},dd t =
mrm{B}pars{x,n + 1} pars{~mrm{B}: Beta Function~}
\[5mm] = &
{Gammapars{x}Gammapars{n + 1} over Gammapars{x + n + 1}}
phantom{= mrm{B}pars{x,n + 1},,,,,,,,,,,,}
pars{~Gamma: Gamma Function~}
\[5mm] = &
{n! over Gammapars{x + n + 1}/Gammapars{x}} =
{n! over x^{overline{n +1}}} =
bbx{n! over xpars{x + 1}cdotspars{x + n}}
end{align}
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
With $ds{Repars{x} > 0}$:
begin{align}
&bbox[10px,#ffd]{sum_{k = 0}^{n}{pars{-1}^{k} over k + x}{n choose k}} =
sum_{k = 0}^{n}pars{-1}^{k}
pars{int_{0}^{1}t^{k + x - 1},dd t}{n choose k}
\[5mm] = &
int_{0}^{1}t^{x - 1}sum_{k = 0}^{n}
{n choose k}pars{-t}^{k},dd t
\[5mm] = &
int_{0}^{1}t^{x - 1},pars{1 - t}^{n},dd t =
mrm{B}pars{x,n + 1} pars{~mrm{B}: Beta Function~}
\[5mm] = &
{Gammapars{x}Gammapars{n + 1} over Gammapars{x + n + 1}}
phantom{= mrm{B}pars{x,n + 1},,,,,,,,,,,,}
pars{~Gamma: Gamma Function~}
\[5mm] = &
{n! over Gammapars{x + n + 1}/Gammapars{x}} =
{n! over x^{overline{n +1}}} =
bbx{n! over xpars{x + 1}cdotspars{x + n}}
end{align}
edited Nov 28 '18 at 0:44
answered Nov 27 '18 at 17:43
Felix MarinFelix Marin
67.3k7107141
67.3k7107141
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005100%2fprove-that-sumn-k-0-frac-1kkx-binomnk-fracnxx1-cdotsx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Both functions have the same simple poles, with the same residues. Or you may just use induction on $n$.
– Jack D'Aurizio
Nov 19 '18 at 16:10
One of several links that you may consult is at this MSE post.
– Marko Riedel
Nov 19 '18 at 16:39
Or alternatively, this MSE post II.
– Marko Riedel
Nov 19 '18 at 16:47