Convergence in distribution of Poisson variables.
$begingroup$
Consider ${ X_{i} }$ are independent random variables with Poisson distribution. We want to know about convergence in distribution of $frac{S_{n}-mathbb{E}(S_{n})}{sqrt{operatorname{Var}(S_{n})}}$.
There are two cases :
Case 1 : $sum_{i}lambda_{i}$ converges. Then we can say variance and mean value of $S_{n}$ converges to some fixed value. Also we know that sum of Poisson random variables is also the Poisson random variable with parameter equals sum of previous ones.
So in my opinion $frac{S_{n}-mathbb{E}(S_{n})}{sqrt{operatorname{Var}(S_{n})}}$ converges to $frac{mathrm{Pois}(c) - c}{sqrt{c}}$ , where $c = sum_{i} lambda_{i}$
Case 2 : we have that $sum_{i} lambda_{i}$ diverges. Then I guess we can try to use Central limit theorem and satisfy that $frac{S_{n}-mathbb{E}(S_{n})}{sqrt{operatorname{Var}(S_{n})}}$ converges to $N(0,1)$
Am I right ? Or where have I problems to fix ?
probability-theory proof-verification weak-convergence poisson-distribution probability-limit-theorems
$endgroup$
add a comment |
$begingroup$
Consider ${ X_{i} }$ are independent random variables with Poisson distribution. We want to know about convergence in distribution of $frac{S_{n}-mathbb{E}(S_{n})}{sqrt{operatorname{Var}(S_{n})}}$.
There are two cases :
Case 1 : $sum_{i}lambda_{i}$ converges. Then we can say variance and mean value of $S_{n}$ converges to some fixed value. Also we know that sum of Poisson random variables is also the Poisson random variable with parameter equals sum of previous ones.
So in my opinion $frac{S_{n}-mathbb{E}(S_{n})}{sqrt{operatorname{Var}(S_{n})}}$ converges to $frac{mathrm{Pois}(c) - c}{sqrt{c}}$ , where $c = sum_{i} lambda_{i}$
Case 2 : we have that $sum_{i} lambda_{i}$ diverges. Then I guess we can try to use Central limit theorem and satisfy that $frac{S_{n}-mathbb{E}(S_{n})}{sqrt{operatorname{Var}(S_{n})}}$ converges to $N(0,1)$
Am I right ? Or where have I problems to fix ?
probability-theory proof-verification weak-convergence poisson-distribution probability-limit-theorems
$endgroup$
1
$begingroup$
How do you expand "i.i.d."? In standard terminology if $X_i$'s are i.i.d Poisson then the parameters $lambda_i$ are all the same, so CLT applies.
$endgroup$
– Kavi Rama Murthy
May 11 '18 at 8:04
$begingroup$
@KaviRamaMurthy my bad!
$endgroup$
– openspace
May 11 '18 at 8:04
$begingroup$
@KaviRamaMurthy changed
$endgroup$
– openspace
May 11 '18 at 8:15
add a comment |
$begingroup$
Consider ${ X_{i} }$ are independent random variables with Poisson distribution. We want to know about convergence in distribution of $frac{S_{n}-mathbb{E}(S_{n})}{sqrt{operatorname{Var}(S_{n})}}$.
There are two cases :
Case 1 : $sum_{i}lambda_{i}$ converges. Then we can say variance and mean value of $S_{n}$ converges to some fixed value. Also we know that sum of Poisson random variables is also the Poisson random variable with parameter equals sum of previous ones.
So in my opinion $frac{S_{n}-mathbb{E}(S_{n})}{sqrt{operatorname{Var}(S_{n})}}$ converges to $frac{mathrm{Pois}(c) - c}{sqrt{c}}$ , where $c = sum_{i} lambda_{i}$
Case 2 : we have that $sum_{i} lambda_{i}$ diverges. Then I guess we can try to use Central limit theorem and satisfy that $frac{S_{n}-mathbb{E}(S_{n})}{sqrt{operatorname{Var}(S_{n})}}$ converges to $N(0,1)$
Am I right ? Or where have I problems to fix ?
probability-theory proof-verification weak-convergence poisson-distribution probability-limit-theorems
$endgroup$
Consider ${ X_{i} }$ are independent random variables with Poisson distribution. We want to know about convergence in distribution of $frac{S_{n}-mathbb{E}(S_{n})}{sqrt{operatorname{Var}(S_{n})}}$.
There are two cases :
Case 1 : $sum_{i}lambda_{i}$ converges. Then we can say variance and mean value of $S_{n}$ converges to some fixed value. Also we know that sum of Poisson random variables is also the Poisson random variable with parameter equals sum of previous ones.
So in my opinion $frac{S_{n}-mathbb{E}(S_{n})}{sqrt{operatorname{Var}(S_{n})}}$ converges to $frac{mathrm{Pois}(c) - c}{sqrt{c}}$ , where $c = sum_{i} lambda_{i}$
Case 2 : we have that $sum_{i} lambda_{i}$ diverges. Then I guess we can try to use Central limit theorem and satisfy that $frac{S_{n}-mathbb{E}(S_{n})}{sqrt{operatorname{Var}(S_{n})}}$ converges to $N(0,1)$
Am I right ? Or where have I problems to fix ?
probability-theory proof-verification weak-convergence poisson-distribution probability-limit-theorems
probability-theory proof-verification weak-convergence poisson-distribution probability-limit-theorems
edited Nov 24 '18 at 22:52
Davide Giraudo
125k16150261
125k16150261
asked May 11 '18 at 7:58
openspaceopenspace
3,4352822
3,4352822
1
$begingroup$
How do you expand "i.i.d."? In standard terminology if $X_i$'s are i.i.d Poisson then the parameters $lambda_i$ are all the same, so CLT applies.
$endgroup$
– Kavi Rama Murthy
May 11 '18 at 8:04
$begingroup$
@KaviRamaMurthy my bad!
$endgroup$
– openspace
May 11 '18 at 8:04
$begingroup$
@KaviRamaMurthy changed
$endgroup$
– openspace
May 11 '18 at 8:15
add a comment |
1
$begingroup$
How do you expand "i.i.d."? In standard terminology if $X_i$'s are i.i.d Poisson then the parameters $lambda_i$ are all the same, so CLT applies.
$endgroup$
– Kavi Rama Murthy
May 11 '18 at 8:04
$begingroup$
@KaviRamaMurthy my bad!
$endgroup$
– openspace
May 11 '18 at 8:04
$begingroup$
@KaviRamaMurthy changed
$endgroup$
– openspace
May 11 '18 at 8:15
1
1
$begingroup$
How do you expand "i.i.d."? In standard terminology if $X_i$'s are i.i.d Poisson then the parameters $lambda_i$ are all the same, so CLT applies.
$endgroup$
– Kavi Rama Murthy
May 11 '18 at 8:04
$begingroup$
How do you expand "i.i.d."? In standard terminology if $X_i$'s are i.i.d Poisson then the parameters $lambda_i$ are all the same, so CLT applies.
$endgroup$
– Kavi Rama Murthy
May 11 '18 at 8:04
$begingroup$
@KaviRamaMurthy my bad!
$endgroup$
– openspace
May 11 '18 at 8:04
$begingroup$
@KaviRamaMurthy my bad!
$endgroup$
– openspace
May 11 '18 at 8:04
$begingroup$
@KaviRamaMurthy changed
$endgroup$
– openspace
May 11 '18 at 8:15
$begingroup$
@KaviRamaMurthy changed
$endgroup$
– openspace
May 11 '18 at 8:15
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The answer is easy if you compute the characteristic function explicitly. Let $u_n=lambda_1+lambda_2++...+lambda_n$. Then $Ee^{it(S_n-ES_n)/sqrt (Var(S_n)}=e^{-itsqrt (u_n)}prod_{j=1}^{n}(Ee^{itX_j /sqrt(u_n)}$. The Poisson characteristic function (paramater $lambda $) is $e^{-lambda (1- e^{it})}$. We get $e^{-itsqrt (u_n)}e^{-u_n (1-e^{it/sqrt (u_n)})}$. Using the Taylor expansion of $e^{it/sqrt (u_n)}$ up to the term in $t^{2}$ you will see that that characteristic function indeed converges to $e^{-t^{2}/2}$ if $sum lambda_j =infty$. The characteristic function also converges when $sum lambda_j <infty$ and you can write down the limiting characteristic function explictly.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2776301%2fconvergence-in-distribution-of-poisson-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The answer is easy if you compute the characteristic function explicitly. Let $u_n=lambda_1+lambda_2++...+lambda_n$. Then $Ee^{it(S_n-ES_n)/sqrt (Var(S_n)}=e^{-itsqrt (u_n)}prod_{j=1}^{n}(Ee^{itX_j /sqrt(u_n)}$. The Poisson characteristic function (paramater $lambda $) is $e^{-lambda (1- e^{it})}$. We get $e^{-itsqrt (u_n)}e^{-u_n (1-e^{it/sqrt (u_n)})}$. Using the Taylor expansion of $e^{it/sqrt (u_n)}$ up to the term in $t^{2}$ you will see that that characteristic function indeed converges to $e^{-t^{2}/2}$ if $sum lambda_j =infty$. The characteristic function also converges when $sum lambda_j <infty$ and you can write down the limiting characteristic function explictly.
$endgroup$
add a comment |
$begingroup$
The answer is easy if you compute the characteristic function explicitly. Let $u_n=lambda_1+lambda_2++...+lambda_n$. Then $Ee^{it(S_n-ES_n)/sqrt (Var(S_n)}=e^{-itsqrt (u_n)}prod_{j=1}^{n}(Ee^{itX_j /sqrt(u_n)}$. The Poisson characteristic function (paramater $lambda $) is $e^{-lambda (1- e^{it})}$. We get $e^{-itsqrt (u_n)}e^{-u_n (1-e^{it/sqrt (u_n)})}$. Using the Taylor expansion of $e^{it/sqrt (u_n)}$ up to the term in $t^{2}$ you will see that that characteristic function indeed converges to $e^{-t^{2}/2}$ if $sum lambda_j =infty$. The characteristic function also converges when $sum lambda_j <infty$ and you can write down the limiting characteristic function explictly.
$endgroup$
add a comment |
$begingroup$
The answer is easy if you compute the characteristic function explicitly. Let $u_n=lambda_1+lambda_2++...+lambda_n$. Then $Ee^{it(S_n-ES_n)/sqrt (Var(S_n)}=e^{-itsqrt (u_n)}prod_{j=1}^{n}(Ee^{itX_j /sqrt(u_n)}$. The Poisson characteristic function (paramater $lambda $) is $e^{-lambda (1- e^{it})}$. We get $e^{-itsqrt (u_n)}e^{-u_n (1-e^{it/sqrt (u_n)})}$. Using the Taylor expansion of $e^{it/sqrt (u_n)}$ up to the term in $t^{2}$ you will see that that characteristic function indeed converges to $e^{-t^{2}/2}$ if $sum lambda_j =infty$. The characteristic function also converges when $sum lambda_j <infty$ and you can write down the limiting characteristic function explictly.
$endgroup$
The answer is easy if you compute the characteristic function explicitly. Let $u_n=lambda_1+lambda_2++...+lambda_n$. Then $Ee^{it(S_n-ES_n)/sqrt (Var(S_n)}=e^{-itsqrt (u_n)}prod_{j=1}^{n}(Ee^{itX_j /sqrt(u_n)}$. The Poisson characteristic function (paramater $lambda $) is $e^{-lambda (1- e^{it})}$. We get $e^{-itsqrt (u_n)}e^{-u_n (1-e^{it/sqrt (u_n)})}$. Using the Taylor expansion of $e^{it/sqrt (u_n)}$ up to the term in $t^{2}$ you will see that that characteristic function indeed converges to $e^{-t^{2}/2}$ if $sum lambda_j =infty$. The characteristic function also converges when $sum lambda_j <infty$ and you can write down the limiting characteristic function explictly.
answered May 11 '18 at 9:22
Kavi Rama MurthyKavi Rama Murthy
53.6k32055
53.6k32055
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2776301%2fconvergence-in-distribution-of-poisson-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
How do you expand "i.i.d."? In standard terminology if $X_i$'s are i.i.d Poisson then the parameters $lambda_i$ are all the same, so CLT applies.
$endgroup$
– Kavi Rama Murthy
May 11 '18 at 8:04
$begingroup$
@KaviRamaMurthy my bad!
$endgroup$
– openspace
May 11 '18 at 8:04
$begingroup$
@KaviRamaMurthy changed
$endgroup$
– openspace
May 11 '18 at 8:15