Injecting cross-sectional and temporal correlations into a random matrix
up vote
0
down vote
favorite
Let $X$ be a random matrix, constituted of 4 vectors of time series $X_i,t$, $i=1,ldots,4$, $t=1,ldots,3$.
$$X=left(
begin{array}{cccc}
x_{1,1} & x_{2,1} & x_{3,1} & x_{4,1} \
x_{1,2} & x_{2,2} & x_{3,2} & x_{4,2} \
x_{1,3} & x_{2,3} & x_{3,3} & x_{4,3} \
end{array}
right).$$
I am trying to inject both temporal correlation between $X_{i,t}$ and $X_{i,t+1}$ and cross-sectional between $X_{i,t}$ and $X_{i+1,t}$.
We start with temporal correlation, with $epsilon$ as random noise, $mathbb{E}(epsilon_{i,j})=0$.
Rewriting
$$X=left(
begin{array}{cccc}
x_{1,1} & x_{2,1} & x_{3,1} & x_{4,1} \
rho _1 x_{1,1}+epsilon _{1,1} & rho _2 x_{2,1}+epsilon _{2,1} & rho _3 x_{3,1}+epsilon _{3,1} & rho _4 x_{4,1}+epsilon _{4,1} \
rho _1 left(rho _1 x_{1,1}+epsilon _{1,1}right)+epsilon _{1,2} & rho _2 left(rho _2 x_{2,1}+epsilon _{2,1}right)+epsilon _{2,2} & rho _3 left(rho _3 x_{3,1}+epsilon _{3,1}right)+epsilon _{3,2} & rho _4 left(rho _4 x_{4,1}+epsilon _{4,1}right)+epsilon _{4,2} \
end{array}
right)$$
and add cross-sectional correlation, rewriting
$X=left(
begin{array}{cccc}
x_{1,1} & frac{sigma _2 rho _{1,2} x_{1,1}}{sigma _1}+epsilon _{2,1} & frac{sigma _3 rho _{1,3} x_{1,1}}{sigma _1}+epsilon _{3,1} & frac{sigma _3 rho _{1,4} x_{1,1}}{sigma _1}+epsilon _{4,1} \
rho _1 x_{1,1}+epsilon _{1,1} & rho _2 left(frac{sigma _2 rho _{1,2} x_{1,1}}{sigma _1}+epsilon _{2,2}right)+epsilon _{2,1} & rho _3 left(frac{sigma _3 rho _{1,3} x_{1,1}}{sigma _1}+epsilon _{3,2}right)+epsilon _{3,1} & rho _4 left(frac{sigma _3 rho _{1,4} x_{1,1}}{sigma _1}+epsilon _{4,2}right)+epsilon _{4,1} \
rho _1 left(rho _1 x_{1,1}+epsilon _{1,1}right)+epsilon _{1,2} & rho _2 left(rho _2 left(frac{sigma _2 rho _{1,2} x_{1,1}}{sigma _1}+epsilon _{2,1}right)+epsilon _{2,1}right)+epsilon _{2,2} & rho _3 left(rho _3 left(frac{sigma _3 rho _{1,3} x_{1,1}}{sigma _1}+epsilon _{3,1}right)+epsilon _{3,1}right)+epsilon _{3,2} & rho _4 left(rho _4 left(frac{sigma _3 rho _{1,4} x_{1,1}}{sigma _1}+epsilon _{4,1}right)+epsilon _{4,1}right)+epsilon _{4,2} \
end{array}
right)$
Am I doing it right?
probability random-matrices
add a comment |
up vote
0
down vote
favorite
Let $X$ be a random matrix, constituted of 4 vectors of time series $X_i,t$, $i=1,ldots,4$, $t=1,ldots,3$.
$$X=left(
begin{array}{cccc}
x_{1,1} & x_{2,1} & x_{3,1} & x_{4,1} \
x_{1,2} & x_{2,2} & x_{3,2} & x_{4,2} \
x_{1,3} & x_{2,3} & x_{3,3} & x_{4,3} \
end{array}
right).$$
I am trying to inject both temporal correlation between $X_{i,t}$ and $X_{i,t+1}$ and cross-sectional between $X_{i,t}$ and $X_{i+1,t}$.
We start with temporal correlation, with $epsilon$ as random noise, $mathbb{E}(epsilon_{i,j})=0$.
Rewriting
$$X=left(
begin{array}{cccc}
x_{1,1} & x_{2,1} & x_{3,1} & x_{4,1} \
rho _1 x_{1,1}+epsilon _{1,1} & rho _2 x_{2,1}+epsilon _{2,1} & rho _3 x_{3,1}+epsilon _{3,1} & rho _4 x_{4,1}+epsilon _{4,1} \
rho _1 left(rho _1 x_{1,1}+epsilon _{1,1}right)+epsilon _{1,2} & rho _2 left(rho _2 x_{2,1}+epsilon _{2,1}right)+epsilon _{2,2} & rho _3 left(rho _3 x_{3,1}+epsilon _{3,1}right)+epsilon _{3,2} & rho _4 left(rho _4 x_{4,1}+epsilon _{4,1}right)+epsilon _{4,2} \
end{array}
right)$$
and add cross-sectional correlation, rewriting
$X=left(
begin{array}{cccc}
x_{1,1} & frac{sigma _2 rho _{1,2} x_{1,1}}{sigma _1}+epsilon _{2,1} & frac{sigma _3 rho _{1,3} x_{1,1}}{sigma _1}+epsilon _{3,1} & frac{sigma _3 rho _{1,4} x_{1,1}}{sigma _1}+epsilon _{4,1} \
rho _1 x_{1,1}+epsilon _{1,1} & rho _2 left(frac{sigma _2 rho _{1,2} x_{1,1}}{sigma _1}+epsilon _{2,2}right)+epsilon _{2,1} & rho _3 left(frac{sigma _3 rho _{1,3} x_{1,1}}{sigma _1}+epsilon _{3,2}right)+epsilon _{3,1} & rho _4 left(frac{sigma _3 rho _{1,4} x_{1,1}}{sigma _1}+epsilon _{4,2}right)+epsilon _{4,1} \
rho _1 left(rho _1 x_{1,1}+epsilon _{1,1}right)+epsilon _{1,2} & rho _2 left(rho _2 left(frac{sigma _2 rho _{1,2} x_{1,1}}{sigma _1}+epsilon _{2,1}right)+epsilon _{2,1}right)+epsilon _{2,2} & rho _3 left(rho _3 left(frac{sigma _3 rho _{1,3} x_{1,1}}{sigma _1}+epsilon _{3,1}right)+epsilon _{3,1}right)+epsilon _{3,2} & rho _4 left(rho _4 left(frac{sigma _3 rho _{1,4} x_{1,1}}{sigma _1}+epsilon _{4,1}right)+epsilon _{4,1}right)+epsilon _{4,2} \
end{array}
right)$
Am I doing it right?
probability random-matrices
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $X$ be a random matrix, constituted of 4 vectors of time series $X_i,t$, $i=1,ldots,4$, $t=1,ldots,3$.
$$X=left(
begin{array}{cccc}
x_{1,1} & x_{2,1} & x_{3,1} & x_{4,1} \
x_{1,2} & x_{2,2} & x_{3,2} & x_{4,2} \
x_{1,3} & x_{2,3} & x_{3,3} & x_{4,3} \
end{array}
right).$$
I am trying to inject both temporal correlation between $X_{i,t}$ and $X_{i,t+1}$ and cross-sectional between $X_{i,t}$ and $X_{i+1,t}$.
We start with temporal correlation, with $epsilon$ as random noise, $mathbb{E}(epsilon_{i,j})=0$.
Rewriting
$$X=left(
begin{array}{cccc}
x_{1,1} & x_{2,1} & x_{3,1} & x_{4,1} \
rho _1 x_{1,1}+epsilon _{1,1} & rho _2 x_{2,1}+epsilon _{2,1} & rho _3 x_{3,1}+epsilon _{3,1} & rho _4 x_{4,1}+epsilon _{4,1} \
rho _1 left(rho _1 x_{1,1}+epsilon _{1,1}right)+epsilon _{1,2} & rho _2 left(rho _2 x_{2,1}+epsilon _{2,1}right)+epsilon _{2,2} & rho _3 left(rho _3 x_{3,1}+epsilon _{3,1}right)+epsilon _{3,2} & rho _4 left(rho _4 x_{4,1}+epsilon _{4,1}right)+epsilon _{4,2} \
end{array}
right)$$
and add cross-sectional correlation, rewriting
$X=left(
begin{array}{cccc}
x_{1,1} & frac{sigma _2 rho _{1,2} x_{1,1}}{sigma _1}+epsilon _{2,1} & frac{sigma _3 rho _{1,3} x_{1,1}}{sigma _1}+epsilon _{3,1} & frac{sigma _3 rho _{1,4} x_{1,1}}{sigma _1}+epsilon _{4,1} \
rho _1 x_{1,1}+epsilon _{1,1} & rho _2 left(frac{sigma _2 rho _{1,2} x_{1,1}}{sigma _1}+epsilon _{2,2}right)+epsilon _{2,1} & rho _3 left(frac{sigma _3 rho _{1,3} x_{1,1}}{sigma _1}+epsilon _{3,2}right)+epsilon _{3,1} & rho _4 left(frac{sigma _3 rho _{1,4} x_{1,1}}{sigma _1}+epsilon _{4,2}right)+epsilon _{4,1} \
rho _1 left(rho _1 x_{1,1}+epsilon _{1,1}right)+epsilon _{1,2} & rho _2 left(rho _2 left(frac{sigma _2 rho _{1,2} x_{1,1}}{sigma _1}+epsilon _{2,1}right)+epsilon _{2,1}right)+epsilon _{2,2} & rho _3 left(rho _3 left(frac{sigma _3 rho _{1,3} x_{1,1}}{sigma _1}+epsilon _{3,1}right)+epsilon _{3,1}right)+epsilon _{3,2} & rho _4 left(rho _4 left(frac{sigma _3 rho _{1,4} x_{1,1}}{sigma _1}+epsilon _{4,1}right)+epsilon _{4,1}right)+epsilon _{4,2} \
end{array}
right)$
Am I doing it right?
probability random-matrices
Let $X$ be a random matrix, constituted of 4 vectors of time series $X_i,t$, $i=1,ldots,4$, $t=1,ldots,3$.
$$X=left(
begin{array}{cccc}
x_{1,1} & x_{2,1} & x_{3,1} & x_{4,1} \
x_{1,2} & x_{2,2} & x_{3,2} & x_{4,2} \
x_{1,3} & x_{2,3} & x_{3,3} & x_{4,3} \
end{array}
right).$$
I am trying to inject both temporal correlation between $X_{i,t}$ and $X_{i,t+1}$ and cross-sectional between $X_{i,t}$ and $X_{i+1,t}$.
We start with temporal correlation, with $epsilon$ as random noise, $mathbb{E}(epsilon_{i,j})=0$.
Rewriting
$$X=left(
begin{array}{cccc}
x_{1,1} & x_{2,1} & x_{3,1} & x_{4,1} \
rho _1 x_{1,1}+epsilon _{1,1} & rho _2 x_{2,1}+epsilon _{2,1} & rho _3 x_{3,1}+epsilon _{3,1} & rho _4 x_{4,1}+epsilon _{4,1} \
rho _1 left(rho _1 x_{1,1}+epsilon _{1,1}right)+epsilon _{1,2} & rho _2 left(rho _2 x_{2,1}+epsilon _{2,1}right)+epsilon _{2,2} & rho _3 left(rho _3 x_{3,1}+epsilon _{3,1}right)+epsilon _{3,2} & rho _4 left(rho _4 x_{4,1}+epsilon _{4,1}right)+epsilon _{4,2} \
end{array}
right)$$
and add cross-sectional correlation, rewriting
$X=left(
begin{array}{cccc}
x_{1,1} & frac{sigma _2 rho _{1,2} x_{1,1}}{sigma _1}+epsilon _{2,1} & frac{sigma _3 rho _{1,3} x_{1,1}}{sigma _1}+epsilon _{3,1} & frac{sigma _3 rho _{1,4} x_{1,1}}{sigma _1}+epsilon _{4,1} \
rho _1 x_{1,1}+epsilon _{1,1} & rho _2 left(frac{sigma _2 rho _{1,2} x_{1,1}}{sigma _1}+epsilon _{2,2}right)+epsilon _{2,1} & rho _3 left(frac{sigma _3 rho _{1,3} x_{1,1}}{sigma _1}+epsilon _{3,2}right)+epsilon _{3,1} & rho _4 left(frac{sigma _3 rho _{1,4} x_{1,1}}{sigma _1}+epsilon _{4,2}right)+epsilon _{4,1} \
rho _1 left(rho _1 x_{1,1}+epsilon _{1,1}right)+epsilon _{1,2} & rho _2 left(rho _2 left(frac{sigma _2 rho _{1,2} x_{1,1}}{sigma _1}+epsilon _{2,1}right)+epsilon _{2,1}right)+epsilon _{2,2} & rho _3 left(rho _3 left(frac{sigma _3 rho _{1,3} x_{1,1}}{sigma _1}+epsilon _{3,1}right)+epsilon _{3,1}right)+epsilon _{3,2} & rho _4 left(rho _4 left(frac{sigma _3 rho _{1,4} x_{1,1}}{sigma _1}+epsilon _{4,1}right)+epsilon _{4,1}right)+epsilon _{4,2} \
end{array}
right)$
Am I doing it right?
probability random-matrices
probability random-matrices
asked Nov 15 at 18:51
Nero
1,91521678
1,91521678
add a comment |
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3000115%2finjecting-cross-sectional-and-temporal-correlations-into-a-random-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown