How to solve $int frac{a^x + b^x}{c^x + d^x}:dx$
up vote
3
down vote
favorite
As an extension of this question how would we address integrals of the form:
$$int frac{a^x + b^x}{c^x + d^x}:dx$$
Where $a,b,c,d in mathbb{R}^{+}$ are the values are distinct.
Does anyone have any starting points?
integration
add a comment |
up vote
3
down vote
favorite
As an extension of this question how would we address integrals of the form:
$$int frac{a^x + b^x}{c^x + d^x}:dx$$
Where $a,b,c,d in mathbb{R}^{+}$ are the values are distinct.
Does anyone have any starting points?
integration
8
$$intfrac{b^x}{c^x+d^x}dx=frac{e^{x (log (b)-log (d))} , _2F_1left(1,frac{log (b)-log (d)}{log (c)-log (d)};frac{log (b)-log (d)}{log (c)-log (d)}+1;-e^{(log (c)-log (d)) x}right)}{log (b)-log (d)}$$
– Kemono Chen
Nov 15 at 3:35
add a comment |
up vote
3
down vote
favorite
up vote
3
down vote
favorite
As an extension of this question how would we address integrals of the form:
$$int frac{a^x + b^x}{c^x + d^x}:dx$$
Where $a,b,c,d in mathbb{R}^{+}$ are the values are distinct.
Does anyone have any starting points?
integration
As an extension of this question how would we address integrals of the form:
$$int frac{a^x + b^x}{c^x + d^x}:dx$$
Where $a,b,c,d in mathbb{R}^{+}$ are the values are distinct.
Does anyone have any starting points?
integration
integration
asked Nov 15 at 3:23
DavidG
815514
815514
8
$$intfrac{b^x}{c^x+d^x}dx=frac{e^{x (log (b)-log (d))} , _2F_1left(1,frac{log (b)-log (d)}{log (c)-log (d)};frac{log (b)-log (d)}{log (c)-log (d)}+1;-e^{(log (c)-log (d)) x}right)}{log (b)-log (d)}$$
– Kemono Chen
Nov 15 at 3:35
add a comment |
8
$$intfrac{b^x}{c^x+d^x}dx=frac{e^{x (log (b)-log (d))} , _2F_1left(1,frac{log (b)-log (d)}{log (c)-log (d)};frac{log (b)-log (d)}{log (c)-log (d)}+1;-e^{(log (c)-log (d)) x}right)}{log (b)-log (d)}$$
– Kemono Chen
Nov 15 at 3:35
8
8
$$intfrac{b^x}{c^x+d^x}dx=frac{e^{x (log (b)-log (d))} , _2F_1left(1,frac{log (b)-log (d)}{log (c)-log (d)};frac{log (b)-log (d)}{log (c)-log (d)}+1;-e^{(log (c)-log (d)) x}right)}{log (b)-log (d)}$$
– Kemono Chen
Nov 15 at 3:35
$$intfrac{b^x}{c^x+d^x}dx=frac{e^{x (log (b)-log (d))} , _2F_1left(1,frac{log (b)-log (d)}{log (c)-log (d)};frac{log (b)-log (d)}{log (c)-log (d)}+1;-e^{(log (c)-log (d)) x}right)}{log (b)-log (d)}$$
– Kemono Chen
Nov 15 at 3:35
add a comment |
3 Answers
3
active
oldest
votes
up vote
4
down vote
accepted
By multiplying through by $frac{d^{-x}}{d^{-x}}$, we may assume w.l.o.g. that $d = 1$ and so evaluate
$$int frac{alpha^x + beta^x}{gamma^x + 1} dx .$$
In the special case $a d - b c = 0$ ($alpha = beta gamma$), the integrand simplifies to an exponential function. But generically, we may as well split the integrand into its summands, and so it's enough to evaluate $$int frac{alpha^x dx}{gamma^x + 1}. $$
For $alpha = 1$, an elementary integration gives $$boxed{int frac{dx}{gamma^x + 1} = x - log_{gamma}(gamma^x + 1) + C} .$$
For $alpha neq 1$, substituting $u = alpha^x, du = alpha^x log alpha$ gives (as was essentially observed in the comments)
$$boxed{int frac{alpha^x dx}{gamma^x + 1}
= frac{1}{log alpha} int frac{du}{1 + u^{lambda}} = {}_2 F_1(1, lambda^{-1}; 1 + lambda^{-1}; -u^{lambda}) u + C , quad lambda := log_{alpha} gamma},$$
where ${}_2 F_1$ is Gauss' hypergeometric function.
For generic $lambda$ this expression is the best we can do, but if $lambda$ is rational, say, $lambda = frac{m}{n}$, so that $alpha^m = gamma^n$, the substitution $u = v^n, du = n v^{n - 1} dv$ rationalizes the integral, making it amenable to other familiar techniques:
$$int frac{du}{1 + u^{lambda}} = n int frac{v^{n - 1} dv}{1 + v^m} .$$
For example, for $lambda = 2$ ($gamma = alpha^2$), the integral is
$$int frac{alpha^x dx}{alpha^{2 x} + 1} = frac{1}{log alpha} int frac{du}{1 + u^2} = frac{1}{log alpha} arctan (x log alpha) + C ,$$
and for $lambda = frac{1}{2}$ ($alpha = gamma^2$), the integral is
$$int frac{gamma^{2 x} dx}{gamma^x + 1} = frac{1}{log gamma}(gamma^x - log(gamma^x + 1)) + C .$$
add a comment |
up vote
5
down vote
Identical to Kemono Chen's comment, write
$$I=intfrac{b^x}{c^x+d^x},dx=int frac{left(frac{b}{d}right)^x}{left(frac{c}{d}right)^x+1},dx$$ and get
$$I=frac{left(frac{b}{d}right)^x }{log
left(frac{b}{d}right)},, _2F_1left(1,frac{log
left(frac{b}{d}right)}{log left(frac{c}{d}right)};frac{log
left(frac{b}{d}right)}{log
left(frac{c}{d}right)}+1;-left(frac{c}{d}right)^xright)$$ where appears the Gaussian or ordinary hypergeometric function.
add a comment |
up vote
1
down vote
$int{frac{a^x+b^x}{c^x+d^x}}dx=int{frac{a^x+b^x}{c^x}frac{1}{1+(d/c)^x}}dx$
$=int{((a/c)^x+(b/c)^x)(1-(d/c)^x+(d/c)^{2x}- ...)}dx$
$=int(((a/c)^x-(ad/c^2)^x+....)+((b/c)^x-(bd/c^2)^x+....))dx$
Which can probably be integrated term-wise into an infinite sum
add a comment |
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
accepted
By multiplying through by $frac{d^{-x}}{d^{-x}}$, we may assume w.l.o.g. that $d = 1$ and so evaluate
$$int frac{alpha^x + beta^x}{gamma^x + 1} dx .$$
In the special case $a d - b c = 0$ ($alpha = beta gamma$), the integrand simplifies to an exponential function. But generically, we may as well split the integrand into its summands, and so it's enough to evaluate $$int frac{alpha^x dx}{gamma^x + 1}. $$
For $alpha = 1$, an elementary integration gives $$boxed{int frac{dx}{gamma^x + 1} = x - log_{gamma}(gamma^x + 1) + C} .$$
For $alpha neq 1$, substituting $u = alpha^x, du = alpha^x log alpha$ gives (as was essentially observed in the comments)
$$boxed{int frac{alpha^x dx}{gamma^x + 1}
= frac{1}{log alpha} int frac{du}{1 + u^{lambda}} = {}_2 F_1(1, lambda^{-1}; 1 + lambda^{-1}; -u^{lambda}) u + C , quad lambda := log_{alpha} gamma},$$
where ${}_2 F_1$ is Gauss' hypergeometric function.
For generic $lambda$ this expression is the best we can do, but if $lambda$ is rational, say, $lambda = frac{m}{n}$, so that $alpha^m = gamma^n$, the substitution $u = v^n, du = n v^{n - 1} dv$ rationalizes the integral, making it amenable to other familiar techniques:
$$int frac{du}{1 + u^{lambda}} = n int frac{v^{n - 1} dv}{1 + v^m} .$$
For example, for $lambda = 2$ ($gamma = alpha^2$), the integral is
$$int frac{alpha^x dx}{alpha^{2 x} + 1} = frac{1}{log alpha} int frac{du}{1 + u^2} = frac{1}{log alpha} arctan (x log alpha) + C ,$$
and for $lambda = frac{1}{2}$ ($alpha = gamma^2$), the integral is
$$int frac{gamma^{2 x} dx}{gamma^x + 1} = frac{1}{log gamma}(gamma^x - log(gamma^x + 1)) + C .$$
add a comment |
up vote
4
down vote
accepted
By multiplying through by $frac{d^{-x}}{d^{-x}}$, we may assume w.l.o.g. that $d = 1$ and so evaluate
$$int frac{alpha^x + beta^x}{gamma^x + 1} dx .$$
In the special case $a d - b c = 0$ ($alpha = beta gamma$), the integrand simplifies to an exponential function. But generically, we may as well split the integrand into its summands, and so it's enough to evaluate $$int frac{alpha^x dx}{gamma^x + 1}. $$
For $alpha = 1$, an elementary integration gives $$boxed{int frac{dx}{gamma^x + 1} = x - log_{gamma}(gamma^x + 1) + C} .$$
For $alpha neq 1$, substituting $u = alpha^x, du = alpha^x log alpha$ gives (as was essentially observed in the comments)
$$boxed{int frac{alpha^x dx}{gamma^x + 1}
= frac{1}{log alpha} int frac{du}{1 + u^{lambda}} = {}_2 F_1(1, lambda^{-1}; 1 + lambda^{-1}; -u^{lambda}) u + C , quad lambda := log_{alpha} gamma},$$
where ${}_2 F_1$ is Gauss' hypergeometric function.
For generic $lambda$ this expression is the best we can do, but if $lambda$ is rational, say, $lambda = frac{m}{n}$, so that $alpha^m = gamma^n$, the substitution $u = v^n, du = n v^{n - 1} dv$ rationalizes the integral, making it amenable to other familiar techniques:
$$int frac{du}{1 + u^{lambda}} = n int frac{v^{n - 1} dv}{1 + v^m} .$$
For example, for $lambda = 2$ ($gamma = alpha^2$), the integral is
$$int frac{alpha^x dx}{alpha^{2 x} + 1} = frac{1}{log alpha} int frac{du}{1 + u^2} = frac{1}{log alpha} arctan (x log alpha) + C ,$$
and for $lambda = frac{1}{2}$ ($alpha = gamma^2$), the integral is
$$int frac{gamma^{2 x} dx}{gamma^x + 1} = frac{1}{log gamma}(gamma^x - log(gamma^x + 1)) + C .$$
add a comment |
up vote
4
down vote
accepted
up vote
4
down vote
accepted
By multiplying through by $frac{d^{-x}}{d^{-x}}$, we may assume w.l.o.g. that $d = 1$ and so evaluate
$$int frac{alpha^x + beta^x}{gamma^x + 1} dx .$$
In the special case $a d - b c = 0$ ($alpha = beta gamma$), the integrand simplifies to an exponential function. But generically, we may as well split the integrand into its summands, and so it's enough to evaluate $$int frac{alpha^x dx}{gamma^x + 1}. $$
For $alpha = 1$, an elementary integration gives $$boxed{int frac{dx}{gamma^x + 1} = x - log_{gamma}(gamma^x + 1) + C} .$$
For $alpha neq 1$, substituting $u = alpha^x, du = alpha^x log alpha$ gives (as was essentially observed in the comments)
$$boxed{int frac{alpha^x dx}{gamma^x + 1}
= frac{1}{log alpha} int frac{du}{1 + u^{lambda}} = {}_2 F_1(1, lambda^{-1}; 1 + lambda^{-1}; -u^{lambda}) u + C , quad lambda := log_{alpha} gamma},$$
where ${}_2 F_1$ is Gauss' hypergeometric function.
For generic $lambda$ this expression is the best we can do, but if $lambda$ is rational, say, $lambda = frac{m}{n}$, so that $alpha^m = gamma^n$, the substitution $u = v^n, du = n v^{n - 1} dv$ rationalizes the integral, making it amenable to other familiar techniques:
$$int frac{du}{1 + u^{lambda}} = n int frac{v^{n - 1} dv}{1 + v^m} .$$
For example, for $lambda = 2$ ($gamma = alpha^2$), the integral is
$$int frac{alpha^x dx}{alpha^{2 x} + 1} = frac{1}{log alpha} int frac{du}{1 + u^2} = frac{1}{log alpha} arctan (x log alpha) + C ,$$
and for $lambda = frac{1}{2}$ ($alpha = gamma^2$), the integral is
$$int frac{gamma^{2 x} dx}{gamma^x + 1} = frac{1}{log gamma}(gamma^x - log(gamma^x + 1)) + C .$$
By multiplying through by $frac{d^{-x}}{d^{-x}}$, we may assume w.l.o.g. that $d = 1$ and so evaluate
$$int frac{alpha^x + beta^x}{gamma^x + 1} dx .$$
In the special case $a d - b c = 0$ ($alpha = beta gamma$), the integrand simplifies to an exponential function. But generically, we may as well split the integrand into its summands, and so it's enough to evaluate $$int frac{alpha^x dx}{gamma^x + 1}. $$
For $alpha = 1$, an elementary integration gives $$boxed{int frac{dx}{gamma^x + 1} = x - log_{gamma}(gamma^x + 1) + C} .$$
For $alpha neq 1$, substituting $u = alpha^x, du = alpha^x log alpha$ gives (as was essentially observed in the comments)
$$boxed{int frac{alpha^x dx}{gamma^x + 1}
= frac{1}{log alpha} int frac{du}{1 + u^{lambda}} = {}_2 F_1(1, lambda^{-1}; 1 + lambda^{-1}; -u^{lambda}) u + C , quad lambda := log_{alpha} gamma},$$
where ${}_2 F_1$ is Gauss' hypergeometric function.
For generic $lambda$ this expression is the best we can do, but if $lambda$ is rational, say, $lambda = frac{m}{n}$, so that $alpha^m = gamma^n$, the substitution $u = v^n, du = n v^{n - 1} dv$ rationalizes the integral, making it amenable to other familiar techniques:
$$int frac{du}{1 + u^{lambda}} = n int frac{v^{n - 1} dv}{1 + v^m} .$$
For example, for $lambda = 2$ ($gamma = alpha^2$), the integral is
$$int frac{alpha^x dx}{alpha^{2 x} + 1} = frac{1}{log alpha} int frac{du}{1 + u^2} = frac{1}{log alpha} arctan (x log alpha) + C ,$$
and for $lambda = frac{1}{2}$ ($alpha = gamma^2$), the integral is
$$int frac{gamma^{2 x} dx}{gamma^x + 1} = frac{1}{log gamma}(gamma^x - log(gamma^x + 1)) + C .$$
edited Nov 15 at 4:40
answered Nov 15 at 4:24
Travis
58.9k765143
58.9k765143
add a comment |
add a comment |
up vote
5
down vote
Identical to Kemono Chen's comment, write
$$I=intfrac{b^x}{c^x+d^x},dx=int frac{left(frac{b}{d}right)^x}{left(frac{c}{d}right)^x+1},dx$$ and get
$$I=frac{left(frac{b}{d}right)^x }{log
left(frac{b}{d}right)},, _2F_1left(1,frac{log
left(frac{b}{d}right)}{log left(frac{c}{d}right)};frac{log
left(frac{b}{d}right)}{log
left(frac{c}{d}right)}+1;-left(frac{c}{d}right)^xright)$$ where appears the Gaussian or ordinary hypergeometric function.
add a comment |
up vote
5
down vote
Identical to Kemono Chen's comment, write
$$I=intfrac{b^x}{c^x+d^x},dx=int frac{left(frac{b}{d}right)^x}{left(frac{c}{d}right)^x+1},dx$$ and get
$$I=frac{left(frac{b}{d}right)^x }{log
left(frac{b}{d}right)},, _2F_1left(1,frac{log
left(frac{b}{d}right)}{log left(frac{c}{d}right)};frac{log
left(frac{b}{d}right)}{log
left(frac{c}{d}right)}+1;-left(frac{c}{d}right)^xright)$$ where appears the Gaussian or ordinary hypergeometric function.
add a comment |
up vote
5
down vote
up vote
5
down vote
Identical to Kemono Chen's comment, write
$$I=intfrac{b^x}{c^x+d^x},dx=int frac{left(frac{b}{d}right)^x}{left(frac{c}{d}right)^x+1},dx$$ and get
$$I=frac{left(frac{b}{d}right)^x }{log
left(frac{b}{d}right)},, _2F_1left(1,frac{log
left(frac{b}{d}right)}{log left(frac{c}{d}right)};frac{log
left(frac{b}{d}right)}{log
left(frac{c}{d}right)}+1;-left(frac{c}{d}right)^xright)$$ where appears the Gaussian or ordinary hypergeometric function.
Identical to Kemono Chen's comment, write
$$I=intfrac{b^x}{c^x+d^x},dx=int frac{left(frac{b}{d}right)^x}{left(frac{c}{d}right)^x+1},dx$$ and get
$$I=frac{left(frac{b}{d}right)^x }{log
left(frac{b}{d}right)},, _2F_1left(1,frac{log
left(frac{b}{d}right)}{log left(frac{c}{d}right)};frac{log
left(frac{b}{d}right)}{log
left(frac{c}{d}right)}+1;-left(frac{c}{d}right)^xright)$$ where appears the Gaussian or ordinary hypergeometric function.
answered Nov 15 at 4:07
Claude Leibovici
116k1156131
116k1156131
add a comment |
add a comment |
up vote
1
down vote
$int{frac{a^x+b^x}{c^x+d^x}}dx=int{frac{a^x+b^x}{c^x}frac{1}{1+(d/c)^x}}dx$
$=int{((a/c)^x+(b/c)^x)(1-(d/c)^x+(d/c)^{2x}- ...)}dx$
$=int(((a/c)^x-(ad/c^2)^x+....)+((b/c)^x-(bd/c^2)^x+....))dx$
Which can probably be integrated term-wise into an infinite sum
add a comment |
up vote
1
down vote
$int{frac{a^x+b^x}{c^x+d^x}}dx=int{frac{a^x+b^x}{c^x}frac{1}{1+(d/c)^x}}dx$
$=int{((a/c)^x+(b/c)^x)(1-(d/c)^x+(d/c)^{2x}- ...)}dx$
$=int(((a/c)^x-(ad/c^2)^x+....)+((b/c)^x-(bd/c^2)^x+....))dx$
Which can probably be integrated term-wise into an infinite sum
add a comment |
up vote
1
down vote
up vote
1
down vote
$int{frac{a^x+b^x}{c^x+d^x}}dx=int{frac{a^x+b^x}{c^x}frac{1}{1+(d/c)^x}}dx$
$=int{((a/c)^x+(b/c)^x)(1-(d/c)^x+(d/c)^{2x}- ...)}dx$
$=int(((a/c)^x-(ad/c^2)^x+....)+((b/c)^x-(bd/c^2)^x+....))dx$
Which can probably be integrated term-wise into an infinite sum
$int{frac{a^x+b^x}{c^x+d^x}}dx=int{frac{a^x+b^x}{c^x}frac{1}{1+(d/c)^x}}dx$
$=int{((a/c)^x+(b/c)^x)(1-(d/c)^x+(d/c)^{2x}- ...)}dx$
$=int(((a/c)^x-(ad/c^2)^x+....)+((b/c)^x-(bd/c^2)^x+....))dx$
Which can probably be integrated term-wise into an infinite sum
answered Nov 15 at 3:49
Seth
42312
42312
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999164%2fhow-to-solve-int-fracax-bxcx-dx-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
8
$$intfrac{b^x}{c^x+d^x}dx=frac{e^{x (log (b)-log (d))} , _2F_1left(1,frac{log (b)-log (d)}{log (c)-log (d)};frac{log (b)-log (d)}{log (c)-log (d)}+1;-e^{(log (c)-log (d)) x}right)}{log (b)-log (d)}$$
– Kemono Chen
Nov 15 at 3:35