Which convergence when discussing density in $L^p$?
$begingroup$
For an exercise in my measure theory course, I need to prove some density results in the $L^p(mathbb R^n)$ space. But density requires convergence and this gets me confused. So when discussing density of a subset (e.g. the measurable simple functions) in $L^p$, what convergence are we talking about? Is it pointwise convergence or $L^p$ convergence?
measure-theory lp-spaces
$endgroup$
add a comment |
$begingroup$
For an exercise in my measure theory course, I need to prove some density results in the $L^p(mathbb R^n)$ space. But density requires convergence and this gets me confused. So when discussing density of a subset (e.g. the measurable simple functions) in $L^p$, what convergence are we talking about? Is it pointwise convergence or $L^p$ convergence?
measure-theory lp-spaces
$endgroup$
2
$begingroup$
$L^p$ convergence
$endgroup$
– mathworker21
Dec 28 '18 at 21:13
2
$begingroup$
When we say $L^p$ space, we mean $L^p$ set with $L^p$ norm.
$endgroup$
– Jakobian
Dec 28 '18 at 21:16
$begingroup$
All right, thanks a lot to both.
$endgroup$
– Bermudes
Dec 28 '18 at 21:27
add a comment |
$begingroup$
For an exercise in my measure theory course, I need to prove some density results in the $L^p(mathbb R^n)$ space. But density requires convergence and this gets me confused. So when discussing density of a subset (e.g. the measurable simple functions) in $L^p$, what convergence are we talking about? Is it pointwise convergence or $L^p$ convergence?
measure-theory lp-spaces
$endgroup$
For an exercise in my measure theory course, I need to prove some density results in the $L^p(mathbb R^n)$ space. But density requires convergence and this gets me confused. So when discussing density of a subset (e.g. the measurable simple functions) in $L^p$, what convergence are we talking about? Is it pointwise convergence or $L^p$ convergence?
measure-theory lp-spaces
measure-theory lp-spaces
asked Dec 28 '18 at 21:11
BermudesBermudes
309214
309214
2
$begingroup$
$L^p$ convergence
$endgroup$
– mathworker21
Dec 28 '18 at 21:13
2
$begingroup$
When we say $L^p$ space, we mean $L^p$ set with $L^p$ norm.
$endgroup$
– Jakobian
Dec 28 '18 at 21:16
$begingroup$
All right, thanks a lot to both.
$endgroup$
– Bermudes
Dec 28 '18 at 21:27
add a comment |
2
$begingroup$
$L^p$ convergence
$endgroup$
– mathworker21
Dec 28 '18 at 21:13
2
$begingroup$
When we say $L^p$ space, we mean $L^p$ set with $L^p$ norm.
$endgroup$
– Jakobian
Dec 28 '18 at 21:16
$begingroup$
All right, thanks a lot to both.
$endgroup$
– Bermudes
Dec 28 '18 at 21:27
2
2
$begingroup$
$L^p$ convergence
$endgroup$
– mathworker21
Dec 28 '18 at 21:13
$begingroup$
$L^p$ convergence
$endgroup$
– mathworker21
Dec 28 '18 at 21:13
2
2
$begingroup$
When we say $L^p$ space, we mean $L^p$ set with $L^p$ norm.
$endgroup$
– Jakobian
Dec 28 '18 at 21:16
$begingroup$
When we say $L^p$ space, we mean $L^p$ set with $L^p$ norm.
$endgroup$
– Jakobian
Dec 28 '18 at 21:16
$begingroup$
All right, thanks a lot to both.
$endgroup$
– Bermudes
Dec 28 '18 at 21:27
$begingroup$
All right, thanks a lot to both.
$endgroup$
– Bermudes
Dec 28 '18 at 21:27
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
A subset $S$ of $mathbb L^pleft(X,mathcal F,muright)$ is dense in $mathbb L^pleft(X,mathcal F,muright)$ if for each element $f$ of $mathbb L^pleft(X,mathcal F,muright)$ and each positive $varepsilon$, there exists an element $g$ of $S$ such that $leftlVert f-grightrVert_p:=left(int_Xleftlvert f(x)-g(x)rightrvert^pmathrm dmu(x)right)^{1/p}lt varepsilon$, or equivalently, there exists a sequence $left(g_nright)_{ngeqslant 1}$ of elements of $S$ such that $lim_{nto +infty}leftlVert f-g_nrightrVert_p=0$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055285%2fwhich-convergence-when-discussing-density-in-lp%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
A subset $S$ of $mathbb L^pleft(X,mathcal F,muright)$ is dense in $mathbb L^pleft(X,mathcal F,muright)$ if for each element $f$ of $mathbb L^pleft(X,mathcal F,muright)$ and each positive $varepsilon$, there exists an element $g$ of $S$ such that $leftlVert f-grightrVert_p:=left(int_Xleftlvert f(x)-g(x)rightrvert^pmathrm dmu(x)right)^{1/p}lt varepsilon$, or equivalently, there exists a sequence $left(g_nright)_{ngeqslant 1}$ of elements of $S$ such that $lim_{nto +infty}leftlVert f-g_nrightrVert_p=0$.
$endgroup$
add a comment |
$begingroup$
A subset $S$ of $mathbb L^pleft(X,mathcal F,muright)$ is dense in $mathbb L^pleft(X,mathcal F,muright)$ if for each element $f$ of $mathbb L^pleft(X,mathcal F,muright)$ and each positive $varepsilon$, there exists an element $g$ of $S$ such that $leftlVert f-grightrVert_p:=left(int_Xleftlvert f(x)-g(x)rightrvert^pmathrm dmu(x)right)^{1/p}lt varepsilon$, or equivalently, there exists a sequence $left(g_nright)_{ngeqslant 1}$ of elements of $S$ such that $lim_{nto +infty}leftlVert f-g_nrightrVert_p=0$.
$endgroup$
add a comment |
$begingroup$
A subset $S$ of $mathbb L^pleft(X,mathcal F,muright)$ is dense in $mathbb L^pleft(X,mathcal F,muright)$ if for each element $f$ of $mathbb L^pleft(X,mathcal F,muright)$ and each positive $varepsilon$, there exists an element $g$ of $S$ such that $leftlVert f-grightrVert_p:=left(int_Xleftlvert f(x)-g(x)rightrvert^pmathrm dmu(x)right)^{1/p}lt varepsilon$, or equivalently, there exists a sequence $left(g_nright)_{ngeqslant 1}$ of elements of $S$ such that $lim_{nto +infty}leftlVert f-g_nrightrVert_p=0$.
$endgroup$
A subset $S$ of $mathbb L^pleft(X,mathcal F,muright)$ is dense in $mathbb L^pleft(X,mathcal F,muright)$ if for each element $f$ of $mathbb L^pleft(X,mathcal F,muright)$ and each positive $varepsilon$, there exists an element $g$ of $S$ such that $leftlVert f-grightrVert_p:=left(int_Xleftlvert f(x)-g(x)rightrvert^pmathrm dmu(x)right)^{1/p}lt varepsilon$, or equivalently, there exists a sequence $left(g_nright)_{ngeqslant 1}$ of elements of $S$ such that $lim_{nto +infty}leftlVert f-g_nrightrVert_p=0$.
answered Jan 21 at 10:07
Davide GiraudoDavide Giraudo
128k17156268
128k17156268
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055285%2fwhich-convergence-when-discussing-density-in-lp%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
$L^p$ convergence
$endgroup$
– mathworker21
Dec 28 '18 at 21:13
2
$begingroup$
When we say $L^p$ space, we mean $L^p$ set with $L^p$ norm.
$endgroup$
– Jakobian
Dec 28 '18 at 21:16
$begingroup$
All right, thanks a lot to both.
$endgroup$
– Bermudes
Dec 28 '18 at 21:27