Value of $lim_{n to infty}dfrac{sqrt{1}+sqrt{2}+sqrt{3}+…+sqrt{n-1}}{nsqrt{n}}$
$begingroup$
Evaluate
$$lim_{n to infty}dfrac{sqrt{1}+sqrt{2}+sqrt{3}+...+sqrt{n-1}}{nsqrt{n}}.$$
I am trying to use the Sandwich principle here..
$lim_{n to infty}dfrac{sqrt{1}+sqrt{2}+sqrt{3}+...+sqrt{n-1}}{nsqrt{n}}=lim_{n to infty}dfrac{sqrt{dfrac{1}{n}}+sqrt{dfrac{2}{n}}+sqrt{dfrac{3}{n}}+...+sqrt{dfrac{n-1}{n}}}{n}ge lim_{n to infty}bigg(sqrt{dfrac{1}{n}}.sqrt{dfrac{2}{n}}.sqrt{dfrac{3}{n}}....sqrt{dfrac{n-1}{n}}bigg )^dfrac{1}{n-1}=lim_{n to infty}bigg(dfrac{(n-1)!}{n^n}bigg )^dfrac{1}{2(n-1)}$
But after this I am a little in doubt.
This link may provide some light Evaluation of the limit $limlimits_{n to infty } frac1{sqrt n}left(1 + frac1{sqrt 2 }+frac1{sqrt 3 }+cdots+frac1{sqrt n } right)$ but I do not understand how it would help my problem..
In continuation of @Rebello's answer here, I would like to provide an answer for the problem given in the link
$limlimits_{n to infty } frac1{sqrt n}left(1 + frac1{sqrt 2 }+frac1{sqrt 3 }+cdots+frac1{sqrt n } right)=limlimits_{n to infty }sum_{k=1}^{n}{dfrac{1}{sqrt{kn}}}=int_{0}^{1}dfrac{1}{sqrt{x}}dx+limlimits_{n to infty }dfrac{1}{n}=2$
calculus limits
$endgroup$
add a comment |
$begingroup$
Evaluate
$$lim_{n to infty}dfrac{sqrt{1}+sqrt{2}+sqrt{3}+...+sqrt{n-1}}{nsqrt{n}}.$$
I am trying to use the Sandwich principle here..
$lim_{n to infty}dfrac{sqrt{1}+sqrt{2}+sqrt{3}+...+sqrt{n-1}}{nsqrt{n}}=lim_{n to infty}dfrac{sqrt{dfrac{1}{n}}+sqrt{dfrac{2}{n}}+sqrt{dfrac{3}{n}}+...+sqrt{dfrac{n-1}{n}}}{n}ge lim_{n to infty}bigg(sqrt{dfrac{1}{n}}.sqrt{dfrac{2}{n}}.sqrt{dfrac{3}{n}}....sqrt{dfrac{n-1}{n}}bigg )^dfrac{1}{n-1}=lim_{n to infty}bigg(dfrac{(n-1)!}{n^n}bigg )^dfrac{1}{2(n-1)}$
But after this I am a little in doubt.
This link may provide some light Evaluation of the limit $limlimits_{n to infty } frac1{sqrt n}left(1 + frac1{sqrt 2 }+frac1{sqrt 3 }+cdots+frac1{sqrt n } right)$ but I do not understand how it would help my problem..
In continuation of @Rebello's answer here, I would like to provide an answer for the problem given in the link
$limlimits_{n to infty } frac1{sqrt n}left(1 + frac1{sqrt 2 }+frac1{sqrt 3 }+cdots+frac1{sqrt n } right)=limlimits_{n to infty }sum_{k=1}^{n}{dfrac{1}{sqrt{kn}}}=int_{0}^{1}dfrac{1}{sqrt{x}}dx+limlimits_{n to infty }dfrac{1}{n}=2$
calculus limits
$endgroup$
4
$begingroup$
Well, this is just a Riemann sum.
$endgroup$
– Zacky
Dec 15 '18 at 8:45
1
$begingroup$
Oh is it? Leave it then I can do this... I forgot Reimann's sum. Sorry
$endgroup$
– Saradamani
Dec 15 '18 at 8:46
2
$begingroup$
Okay then :D Also post it as answer when you finish solving it.
$endgroup$
– Zacky
Dec 15 '18 at 8:48
$begingroup$
There are $n-1$ terms in the numerator
$endgroup$
– Shubham Johri
Dec 15 '18 at 8:51
add a comment |
$begingroup$
Evaluate
$$lim_{n to infty}dfrac{sqrt{1}+sqrt{2}+sqrt{3}+...+sqrt{n-1}}{nsqrt{n}}.$$
I am trying to use the Sandwich principle here..
$lim_{n to infty}dfrac{sqrt{1}+sqrt{2}+sqrt{3}+...+sqrt{n-1}}{nsqrt{n}}=lim_{n to infty}dfrac{sqrt{dfrac{1}{n}}+sqrt{dfrac{2}{n}}+sqrt{dfrac{3}{n}}+...+sqrt{dfrac{n-1}{n}}}{n}ge lim_{n to infty}bigg(sqrt{dfrac{1}{n}}.sqrt{dfrac{2}{n}}.sqrt{dfrac{3}{n}}....sqrt{dfrac{n-1}{n}}bigg )^dfrac{1}{n-1}=lim_{n to infty}bigg(dfrac{(n-1)!}{n^n}bigg )^dfrac{1}{2(n-1)}$
But after this I am a little in doubt.
This link may provide some light Evaluation of the limit $limlimits_{n to infty } frac1{sqrt n}left(1 + frac1{sqrt 2 }+frac1{sqrt 3 }+cdots+frac1{sqrt n } right)$ but I do not understand how it would help my problem..
In continuation of @Rebello's answer here, I would like to provide an answer for the problem given in the link
$limlimits_{n to infty } frac1{sqrt n}left(1 + frac1{sqrt 2 }+frac1{sqrt 3 }+cdots+frac1{sqrt n } right)=limlimits_{n to infty }sum_{k=1}^{n}{dfrac{1}{sqrt{kn}}}=int_{0}^{1}dfrac{1}{sqrt{x}}dx+limlimits_{n to infty }dfrac{1}{n}=2$
calculus limits
$endgroup$
Evaluate
$$lim_{n to infty}dfrac{sqrt{1}+sqrt{2}+sqrt{3}+...+sqrt{n-1}}{nsqrt{n}}.$$
I am trying to use the Sandwich principle here..
$lim_{n to infty}dfrac{sqrt{1}+sqrt{2}+sqrt{3}+...+sqrt{n-1}}{nsqrt{n}}=lim_{n to infty}dfrac{sqrt{dfrac{1}{n}}+sqrt{dfrac{2}{n}}+sqrt{dfrac{3}{n}}+...+sqrt{dfrac{n-1}{n}}}{n}ge lim_{n to infty}bigg(sqrt{dfrac{1}{n}}.sqrt{dfrac{2}{n}}.sqrt{dfrac{3}{n}}....sqrt{dfrac{n-1}{n}}bigg )^dfrac{1}{n-1}=lim_{n to infty}bigg(dfrac{(n-1)!}{n^n}bigg )^dfrac{1}{2(n-1)}$
But after this I am a little in doubt.
This link may provide some light Evaluation of the limit $limlimits_{n to infty } frac1{sqrt n}left(1 + frac1{sqrt 2 }+frac1{sqrt 3 }+cdots+frac1{sqrt n } right)$ but I do not understand how it would help my problem..
In continuation of @Rebello's answer here, I would like to provide an answer for the problem given in the link
$limlimits_{n to infty } frac1{sqrt n}left(1 + frac1{sqrt 2 }+frac1{sqrt 3 }+cdots+frac1{sqrt n } right)=limlimits_{n to infty }sum_{k=1}^{n}{dfrac{1}{sqrt{kn}}}=int_{0}^{1}dfrac{1}{sqrt{x}}dx+limlimits_{n to infty }dfrac{1}{n}=2$
calculus limits
calculus limits
edited Dec 15 '18 at 9:46
Robert Z
101k1072145
101k1072145
asked Dec 15 '18 at 8:42
SaradamaniSaradamani
775314
775314
4
$begingroup$
Well, this is just a Riemann sum.
$endgroup$
– Zacky
Dec 15 '18 at 8:45
1
$begingroup$
Oh is it? Leave it then I can do this... I forgot Reimann's sum. Sorry
$endgroup$
– Saradamani
Dec 15 '18 at 8:46
2
$begingroup$
Okay then :D Also post it as answer when you finish solving it.
$endgroup$
– Zacky
Dec 15 '18 at 8:48
$begingroup$
There are $n-1$ terms in the numerator
$endgroup$
– Shubham Johri
Dec 15 '18 at 8:51
add a comment |
4
$begingroup$
Well, this is just a Riemann sum.
$endgroup$
– Zacky
Dec 15 '18 at 8:45
1
$begingroup$
Oh is it? Leave it then I can do this... I forgot Reimann's sum. Sorry
$endgroup$
– Saradamani
Dec 15 '18 at 8:46
2
$begingroup$
Okay then :D Also post it as answer when you finish solving it.
$endgroup$
– Zacky
Dec 15 '18 at 8:48
$begingroup$
There are $n-1$ terms in the numerator
$endgroup$
– Shubham Johri
Dec 15 '18 at 8:51
4
4
$begingroup$
Well, this is just a Riemann sum.
$endgroup$
– Zacky
Dec 15 '18 at 8:45
$begingroup$
Well, this is just a Riemann sum.
$endgroup$
– Zacky
Dec 15 '18 at 8:45
1
1
$begingroup$
Oh is it? Leave it then I can do this... I forgot Reimann's sum. Sorry
$endgroup$
– Saradamani
Dec 15 '18 at 8:46
$begingroup$
Oh is it? Leave it then I can do this... I forgot Reimann's sum. Sorry
$endgroup$
– Saradamani
Dec 15 '18 at 8:46
2
2
$begingroup$
Okay then :D Also post it as answer when you finish solving it.
$endgroup$
– Zacky
Dec 15 '18 at 8:48
$begingroup$
Okay then :D Also post it as answer when you finish solving it.
$endgroup$
– Zacky
Dec 15 '18 at 8:48
$begingroup$
There are $n-1$ terms in the numerator
$endgroup$
– Shubham Johri
Dec 15 '18 at 8:51
$begingroup$
There are $n-1$ terms in the numerator
$endgroup$
– Shubham Johri
Dec 15 '18 at 8:51
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Hint :
$$lim_{n to infty}dfrac{sqrt{1}+sqrt{2}+sqrt{3}+...+sqrt{n-1}}{nsqrt{n}} = lim_{n to infty} frac{1}{n} sum_{k=0}^{n-1} sqrt{frac{k}{n}} = int_0^1sqrt{x}mathrm{d}x$$
$endgroup$
add a comment |
$begingroup$
Just for your curiosity since you already received good answers.
We can approximate the value of
$$a_n=frac{sum_{i=1}^{n-1} sqrt i }{n sqrt n}$$
$$sum_{i=1}^{n-1} sqrt i =sum_{i=1}^{n} sqrt i -sqrt n=H_n^{left(-frac{1}{2}right)}-sqrt n$$ where appear generalized harmonic numbers.
Now, using the asymptotics
$$H_n^{left(-frac{1}{2}right)}=frac{2 nsqrt n}{3}+frac{sqrt{n}}{2}+zeta
left(-frac{1}{2}right)+frac{1}{24sqrt n}+Oleft(frac{1}{n^{5/2}}
right)$$ making, for large $n$
$$a_n=frac{frac{2 nsqrt n}{3}-frac{sqrt{n}}{2}+zeta
left(-frac{1}{2}right)+frac{1}{24sqrt n}+Oleft(frac{1}{n^{5/2}}
right)} {n sqrt n}=frac{2}{3}-frac{1}{2 n}+frac{zeta
left(-frac{1}{2}right) } {n sqrt n }+Oleft(frac{1}{n^{2}}
right)$$ which, for sure, shows the limit and also how it is approached.
But it also gives a good approximation even for small values of $n$. Using $zeta
left(-frac{1}{2}right)approx -0.207886$ and $n=10$, this would give $a_{10}approx 0.610093$ while the "exact" value is $a_{10}approx 0.610509$.
$endgroup$
$begingroup$
It is a fantastically shown method to tackle the problem. I heard of this approximation of Harmonic series in discrete mathematics. But never heard of $(H_{n})^{-dfrac{1}{2}}$. That's something I have known only today.
$endgroup$
– Saradamani
Dec 16 '18 at 5:56
add a comment |
$begingroup$
One more approach. By Stolz-Cesaro Theorem
$$begin{align}lim_{n to infty}dfrac{sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1}}{nsqrt{n}} &= lim_{n to infty} frac{sqrt{n}}{(n+1)sqrt{n+1}-nsqrt{n}}
\&=lim_{n to infty} frac{1}{(n+1)sqrt{1+frac{1}{n}}-n}\
&=frac{1}{1+frac{1}{2}}=frac{2}{3}end{align}$$
where we used the fact that $sqrt{1+frac{1}{n}}=1+frac{1}{2n}+o(1/n)$.
$endgroup$
$begingroup$
But I do not understand how this Stolz-Cesaro Theorem would help me get the $dfrac{sqrt{n}}{(n+1){sqrt{n+1}}-nsqrt{n}}$ .Please elaborate because according to this theorem if $lim_{n to infty}dfrac{a_{n+1}-a_n}{b_{n+1}-b_n}=l implies lim_{n to infty} dfrac{a_n}{b_n}=l $.But how does this relate to the fraction you obtained. Please dont mind my stupidity for not understanding this..
$endgroup$
– Saradamani
Dec 15 '18 at 16:35
$begingroup$
@Saradamani I added a few details. Is it clear now?
$endgroup$
– Robert Z
Dec 15 '18 at 17:29
1
$begingroup$
@Saradamani For Stolz-Cesaro we have $a_n=sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1}$ and $b_n=nsqrt{n}$.
$endgroup$
– Robert Z
Dec 15 '18 at 17:31
1
$begingroup$
No, If $a_n=sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1}$ then $a_{n+1}-a_n=(sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1}+sqrt{n})-(sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1})=sqrt{n}$
$endgroup$
– Robert Z
Dec 16 '18 at 6:38
1
$begingroup$
@Saradamani As a matter of fact, the classic proof of Stolz-Cesaro Theorem (see link above) is based on the sandwich principle...
$endgroup$
– Robert Z
Dec 16 '18 at 7:05
|
show 5 more comments
$begingroup$
It is sufficient to obtain integral of $sqrt{x}$, when $0leq xleq 1$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3040278%2fvalue-of-lim-n-to-infty-dfrac-sqrt1-sqrt2-sqrt3-sqrtn-1n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint :
$$lim_{n to infty}dfrac{sqrt{1}+sqrt{2}+sqrt{3}+...+sqrt{n-1}}{nsqrt{n}} = lim_{n to infty} frac{1}{n} sum_{k=0}^{n-1} sqrt{frac{k}{n}} = int_0^1sqrt{x}mathrm{d}x$$
$endgroup$
add a comment |
$begingroup$
Hint :
$$lim_{n to infty}dfrac{sqrt{1}+sqrt{2}+sqrt{3}+...+sqrt{n-1}}{nsqrt{n}} = lim_{n to infty} frac{1}{n} sum_{k=0}^{n-1} sqrt{frac{k}{n}} = int_0^1sqrt{x}mathrm{d}x$$
$endgroup$
add a comment |
$begingroup$
Hint :
$$lim_{n to infty}dfrac{sqrt{1}+sqrt{2}+sqrt{3}+...+sqrt{n-1}}{nsqrt{n}} = lim_{n to infty} frac{1}{n} sum_{k=0}^{n-1} sqrt{frac{k}{n}} = int_0^1sqrt{x}mathrm{d}x$$
$endgroup$
Hint :
$$lim_{n to infty}dfrac{sqrt{1}+sqrt{2}+sqrt{3}+...+sqrt{n-1}}{nsqrt{n}} = lim_{n to infty} frac{1}{n} sum_{k=0}^{n-1} sqrt{frac{k}{n}} = int_0^1sqrt{x}mathrm{d}x$$
answered Dec 15 '18 at 8:51
RebellosRebellos
15.7k31250
15.7k31250
add a comment |
add a comment |
$begingroup$
Just for your curiosity since you already received good answers.
We can approximate the value of
$$a_n=frac{sum_{i=1}^{n-1} sqrt i }{n sqrt n}$$
$$sum_{i=1}^{n-1} sqrt i =sum_{i=1}^{n} sqrt i -sqrt n=H_n^{left(-frac{1}{2}right)}-sqrt n$$ where appear generalized harmonic numbers.
Now, using the asymptotics
$$H_n^{left(-frac{1}{2}right)}=frac{2 nsqrt n}{3}+frac{sqrt{n}}{2}+zeta
left(-frac{1}{2}right)+frac{1}{24sqrt n}+Oleft(frac{1}{n^{5/2}}
right)$$ making, for large $n$
$$a_n=frac{frac{2 nsqrt n}{3}-frac{sqrt{n}}{2}+zeta
left(-frac{1}{2}right)+frac{1}{24sqrt n}+Oleft(frac{1}{n^{5/2}}
right)} {n sqrt n}=frac{2}{3}-frac{1}{2 n}+frac{zeta
left(-frac{1}{2}right) } {n sqrt n }+Oleft(frac{1}{n^{2}}
right)$$ which, for sure, shows the limit and also how it is approached.
But it also gives a good approximation even for small values of $n$. Using $zeta
left(-frac{1}{2}right)approx -0.207886$ and $n=10$, this would give $a_{10}approx 0.610093$ while the "exact" value is $a_{10}approx 0.610509$.
$endgroup$
$begingroup$
It is a fantastically shown method to tackle the problem. I heard of this approximation of Harmonic series in discrete mathematics. But never heard of $(H_{n})^{-dfrac{1}{2}}$. That's something I have known only today.
$endgroup$
– Saradamani
Dec 16 '18 at 5:56
add a comment |
$begingroup$
Just for your curiosity since you already received good answers.
We can approximate the value of
$$a_n=frac{sum_{i=1}^{n-1} sqrt i }{n sqrt n}$$
$$sum_{i=1}^{n-1} sqrt i =sum_{i=1}^{n} sqrt i -sqrt n=H_n^{left(-frac{1}{2}right)}-sqrt n$$ where appear generalized harmonic numbers.
Now, using the asymptotics
$$H_n^{left(-frac{1}{2}right)}=frac{2 nsqrt n}{3}+frac{sqrt{n}}{2}+zeta
left(-frac{1}{2}right)+frac{1}{24sqrt n}+Oleft(frac{1}{n^{5/2}}
right)$$ making, for large $n$
$$a_n=frac{frac{2 nsqrt n}{3}-frac{sqrt{n}}{2}+zeta
left(-frac{1}{2}right)+frac{1}{24sqrt n}+Oleft(frac{1}{n^{5/2}}
right)} {n sqrt n}=frac{2}{3}-frac{1}{2 n}+frac{zeta
left(-frac{1}{2}right) } {n sqrt n }+Oleft(frac{1}{n^{2}}
right)$$ which, for sure, shows the limit and also how it is approached.
But it also gives a good approximation even for small values of $n$. Using $zeta
left(-frac{1}{2}right)approx -0.207886$ and $n=10$, this would give $a_{10}approx 0.610093$ while the "exact" value is $a_{10}approx 0.610509$.
$endgroup$
$begingroup$
It is a fantastically shown method to tackle the problem. I heard of this approximation of Harmonic series in discrete mathematics. But never heard of $(H_{n})^{-dfrac{1}{2}}$. That's something I have known only today.
$endgroup$
– Saradamani
Dec 16 '18 at 5:56
add a comment |
$begingroup$
Just for your curiosity since you already received good answers.
We can approximate the value of
$$a_n=frac{sum_{i=1}^{n-1} sqrt i }{n sqrt n}$$
$$sum_{i=1}^{n-1} sqrt i =sum_{i=1}^{n} sqrt i -sqrt n=H_n^{left(-frac{1}{2}right)}-sqrt n$$ where appear generalized harmonic numbers.
Now, using the asymptotics
$$H_n^{left(-frac{1}{2}right)}=frac{2 nsqrt n}{3}+frac{sqrt{n}}{2}+zeta
left(-frac{1}{2}right)+frac{1}{24sqrt n}+Oleft(frac{1}{n^{5/2}}
right)$$ making, for large $n$
$$a_n=frac{frac{2 nsqrt n}{3}-frac{sqrt{n}}{2}+zeta
left(-frac{1}{2}right)+frac{1}{24sqrt n}+Oleft(frac{1}{n^{5/2}}
right)} {n sqrt n}=frac{2}{3}-frac{1}{2 n}+frac{zeta
left(-frac{1}{2}right) } {n sqrt n }+Oleft(frac{1}{n^{2}}
right)$$ which, for sure, shows the limit and also how it is approached.
But it also gives a good approximation even for small values of $n$. Using $zeta
left(-frac{1}{2}right)approx -0.207886$ and $n=10$, this would give $a_{10}approx 0.610093$ while the "exact" value is $a_{10}approx 0.610509$.
$endgroup$
Just for your curiosity since you already received good answers.
We can approximate the value of
$$a_n=frac{sum_{i=1}^{n-1} sqrt i }{n sqrt n}$$
$$sum_{i=1}^{n-1} sqrt i =sum_{i=1}^{n} sqrt i -sqrt n=H_n^{left(-frac{1}{2}right)}-sqrt n$$ where appear generalized harmonic numbers.
Now, using the asymptotics
$$H_n^{left(-frac{1}{2}right)}=frac{2 nsqrt n}{3}+frac{sqrt{n}}{2}+zeta
left(-frac{1}{2}right)+frac{1}{24sqrt n}+Oleft(frac{1}{n^{5/2}}
right)$$ making, for large $n$
$$a_n=frac{frac{2 nsqrt n}{3}-frac{sqrt{n}}{2}+zeta
left(-frac{1}{2}right)+frac{1}{24sqrt n}+Oleft(frac{1}{n^{5/2}}
right)} {n sqrt n}=frac{2}{3}-frac{1}{2 n}+frac{zeta
left(-frac{1}{2}right) } {n sqrt n }+Oleft(frac{1}{n^{2}}
right)$$ which, for sure, shows the limit and also how it is approached.
But it also gives a good approximation even for small values of $n$. Using $zeta
left(-frac{1}{2}right)approx -0.207886$ and $n=10$, this would give $a_{10}approx 0.610093$ while the "exact" value is $a_{10}approx 0.610509$.
answered Dec 15 '18 at 9:38
Claude LeiboviciClaude Leibovici
125k1158135
125k1158135
$begingroup$
It is a fantastically shown method to tackle the problem. I heard of this approximation of Harmonic series in discrete mathematics. But never heard of $(H_{n})^{-dfrac{1}{2}}$. That's something I have known only today.
$endgroup$
– Saradamani
Dec 16 '18 at 5:56
add a comment |
$begingroup$
It is a fantastically shown method to tackle the problem. I heard of this approximation of Harmonic series in discrete mathematics. But never heard of $(H_{n})^{-dfrac{1}{2}}$. That's something I have known only today.
$endgroup$
– Saradamani
Dec 16 '18 at 5:56
$begingroup$
It is a fantastically shown method to tackle the problem. I heard of this approximation of Harmonic series in discrete mathematics. But never heard of $(H_{n})^{-dfrac{1}{2}}$. That's something I have known only today.
$endgroup$
– Saradamani
Dec 16 '18 at 5:56
$begingroup$
It is a fantastically shown method to tackle the problem. I heard of this approximation of Harmonic series in discrete mathematics. But never heard of $(H_{n})^{-dfrac{1}{2}}$. That's something I have known only today.
$endgroup$
– Saradamani
Dec 16 '18 at 5:56
add a comment |
$begingroup$
One more approach. By Stolz-Cesaro Theorem
$$begin{align}lim_{n to infty}dfrac{sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1}}{nsqrt{n}} &= lim_{n to infty} frac{sqrt{n}}{(n+1)sqrt{n+1}-nsqrt{n}}
\&=lim_{n to infty} frac{1}{(n+1)sqrt{1+frac{1}{n}}-n}\
&=frac{1}{1+frac{1}{2}}=frac{2}{3}end{align}$$
where we used the fact that $sqrt{1+frac{1}{n}}=1+frac{1}{2n}+o(1/n)$.
$endgroup$
$begingroup$
But I do not understand how this Stolz-Cesaro Theorem would help me get the $dfrac{sqrt{n}}{(n+1){sqrt{n+1}}-nsqrt{n}}$ .Please elaborate because according to this theorem if $lim_{n to infty}dfrac{a_{n+1}-a_n}{b_{n+1}-b_n}=l implies lim_{n to infty} dfrac{a_n}{b_n}=l $.But how does this relate to the fraction you obtained. Please dont mind my stupidity for not understanding this..
$endgroup$
– Saradamani
Dec 15 '18 at 16:35
$begingroup$
@Saradamani I added a few details. Is it clear now?
$endgroup$
– Robert Z
Dec 15 '18 at 17:29
1
$begingroup$
@Saradamani For Stolz-Cesaro we have $a_n=sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1}$ and $b_n=nsqrt{n}$.
$endgroup$
– Robert Z
Dec 15 '18 at 17:31
1
$begingroup$
No, If $a_n=sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1}$ then $a_{n+1}-a_n=(sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1}+sqrt{n})-(sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1})=sqrt{n}$
$endgroup$
– Robert Z
Dec 16 '18 at 6:38
1
$begingroup$
@Saradamani As a matter of fact, the classic proof of Stolz-Cesaro Theorem (see link above) is based on the sandwich principle...
$endgroup$
– Robert Z
Dec 16 '18 at 7:05
|
show 5 more comments
$begingroup$
One more approach. By Stolz-Cesaro Theorem
$$begin{align}lim_{n to infty}dfrac{sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1}}{nsqrt{n}} &= lim_{n to infty} frac{sqrt{n}}{(n+1)sqrt{n+1}-nsqrt{n}}
\&=lim_{n to infty} frac{1}{(n+1)sqrt{1+frac{1}{n}}-n}\
&=frac{1}{1+frac{1}{2}}=frac{2}{3}end{align}$$
where we used the fact that $sqrt{1+frac{1}{n}}=1+frac{1}{2n}+o(1/n)$.
$endgroup$
$begingroup$
But I do not understand how this Stolz-Cesaro Theorem would help me get the $dfrac{sqrt{n}}{(n+1){sqrt{n+1}}-nsqrt{n}}$ .Please elaborate because according to this theorem if $lim_{n to infty}dfrac{a_{n+1}-a_n}{b_{n+1}-b_n}=l implies lim_{n to infty} dfrac{a_n}{b_n}=l $.But how does this relate to the fraction you obtained. Please dont mind my stupidity for not understanding this..
$endgroup$
– Saradamani
Dec 15 '18 at 16:35
$begingroup$
@Saradamani I added a few details. Is it clear now?
$endgroup$
– Robert Z
Dec 15 '18 at 17:29
1
$begingroup$
@Saradamani For Stolz-Cesaro we have $a_n=sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1}$ and $b_n=nsqrt{n}$.
$endgroup$
– Robert Z
Dec 15 '18 at 17:31
1
$begingroup$
No, If $a_n=sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1}$ then $a_{n+1}-a_n=(sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1}+sqrt{n})-(sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1})=sqrt{n}$
$endgroup$
– Robert Z
Dec 16 '18 at 6:38
1
$begingroup$
@Saradamani As a matter of fact, the classic proof of Stolz-Cesaro Theorem (see link above) is based on the sandwich principle...
$endgroup$
– Robert Z
Dec 16 '18 at 7:05
|
show 5 more comments
$begingroup$
One more approach. By Stolz-Cesaro Theorem
$$begin{align}lim_{n to infty}dfrac{sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1}}{nsqrt{n}} &= lim_{n to infty} frac{sqrt{n}}{(n+1)sqrt{n+1}-nsqrt{n}}
\&=lim_{n to infty} frac{1}{(n+1)sqrt{1+frac{1}{n}}-n}\
&=frac{1}{1+frac{1}{2}}=frac{2}{3}end{align}$$
where we used the fact that $sqrt{1+frac{1}{n}}=1+frac{1}{2n}+o(1/n)$.
$endgroup$
One more approach. By Stolz-Cesaro Theorem
$$begin{align}lim_{n to infty}dfrac{sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1}}{nsqrt{n}} &= lim_{n to infty} frac{sqrt{n}}{(n+1)sqrt{n+1}-nsqrt{n}}
\&=lim_{n to infty} frac{1}{(n+1)sqrt{1+frac{1}{n}}-n}\
&=frac{1}{1+frac{1}{2}}=frac{2}{3}end{align}$$
where we used the fact that $sqrt{1+frac{1}{n}}=1+frac{1}{2n}+o(1/n)$.
edited Dec 15 '18 at 17:28
answered Dec 15 '18 at 9:45
Robert ZRobert Z
101k1072145
101k1072145
$begingroup$
But I do not understand how this Stolz-Cesaro Theorem would help me get the $dfrac{sqrt{n}}{(n+1){sqrt{n+1}}-nsqrt{n}}$ .Please elaborate because according to this theorem if $lim_{n to infty}dfrac{a_{n+1}-a_n}{b_{n+1}-b_n}=l implies lim_{n to infty} dfrac{a_n}{b_n}=l $.But how does this relate to the fraction you obtained. Please dont mind my stupidity for not understanding this..
$endgroup$
– Saradamani
Dec 15 '18 at 16:35
$begingroup$
@Saradamani I added a few details. Is it clear now?
$endgroup$
– Robert Z
Dec 15 '18 at 17:29
1
$begingroup$
@Saradamani For Stolz-Cesaro we have $a_n=sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1}$ and $b_n=nsqrt{n}$.
$endgroup$
– Robert Z
Dec 15 '18 at 17:31
1
$begingroup$
No, If $a_n=sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1}$ then $a_{n+1}-a_n=(sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1}+sqrt{n})-(sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1})=sqrt{n}$
$endgroup$
– Robert Z
Dec 16 '18 at 6:38
1
$begingroup$
@Saradamani As a matter of fact, the classic proof of Stolz-Cesaro Theorem (see link above) is based on the sandwich principle...
$endgroup$
– Robert Z
Dec 16 '18 at 7:05
|
show 5 more comments
$begingroup$
But I do not understand how this Stolz-Cesaro Theorem would help me get the $dfrac{sqrt{n}}{(n+1){sqrt{n+1}}-nsqrt{n}}$ .Please elaborate because according to this theorem if $lim_{n to infty}dfrac{a_{n+1}-a_n}{b_{n+1}-b_n}=l implies lim_{n to infty} dfrac{a_n}{b_n}=l $.But how does this relate to the fraction you obtained. Please dont mind my stupidity for not understanding this..
$endgroup$
– Saradamani
Dec 15 '18 at 16:35
$begingroup$
@Saradamani I added a few details. Is it clear now?
$endgroup$
– Robert Z
Dec 15 '18 at 17:29
1
$begingroup$
@Saradamani For Stolz-Cesaro we have $a_n=sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1}$ and $b_n=nsqrt{n}$.
$endgroup$
– Robert Z
Dec 15 '18 at 17:31
1
$begingroup$
No, If $a_n=sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1}$ then $a_{n+1}-a_n=(sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1}+sqrt{n})-(sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1})=sqrt{n}$
$endgroup$
– Robert Z
Dec 16 '18 at 6:38
1
$begingroup$
@Saradamani As a matter of fact, the classic proof of Stolz-Cesaro Theorem (see link above) is based on the sandwich principle...
$endgroup$
– Robert Z
Dec 16 '18 at 7:05
$begingroup$
But I do not understand how this Stolz-Cesaro Theorem would help me get the $dfrac{sqrt{n}}{(n+1){sqrt{n+1}}-nsqrt{n}}$ .Please elaborate because according to this theorem if $lim_{n to infty}dfrac{a_{n+1}-a_n}{b_{n+1}-b_n}=l implies lim_{n to infty} dfrac{a_n}{b_n}=l $.But how does this relate to the fraction you obtained. Please dont mind my stupidity for not understanding this..
$endgroup$
– Saradamani
Dec 15 '18 at 16:35
$begingroup$
But I do not understand how this Stolz-Cesaro Theorem would help me get the $dfrac{sqrt{n}}{(n+1){sqrt{n+1}}-nsqrt{n}}$ .Please elaborate because according to this theorem if $lim_{n to infty}dfrac{a_{n+1}-a_n}{b_{n+1}-b_n}=l implies lim_{n to infty} dfrac{a_n}{b_n}=l $.But how does this relate to the fraction you obtained. Please dont mind my stupidity for not understanding this..
$endgroup$
– Saradamani
Dec 15 '18 at 16:35
$begingroup$
@Saradamani I added a few details. Is it clear now?
$endgroup$
– Robert Z
Dec 15 '18 at 17:29
$begingroup$
@Saradamani I added a few details. Is it clear now?
$endgroup$
– Robert Z
Dec 15 '18 at 17:29
1
1
$begingroup$
@Saradamani For Stolz-Cesaro we have $a_n=sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1}$ and $b_n=nsqrt{n}$.
$endgroup$
– Robert Z
Dec 15 '18 at 17:31
$begingroup$
@Saradamani For Stolz-Cesaro we have $a_n=sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1}$ and $b_n=nsqrt{n}$.
$endgroup$
– Robert Z
Dec 15 '18 at 17:31
1
1
$begingroup$
No, If $a_n=sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1}$ then $a_{n+1}-a_n=(sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1}+sqrt{n})-(sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1})=sqrt{n}$
$endgroup$
– Robert Z
Dec 16 '18 at 6:38
$begingroup$
No, If $a_n=sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1}$ then $a_{n+1}-a_n=(sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1}+sqrt{n})-(sqrt{1}+sqrt{2}+sqrt{3}+dots+sqrt{n-1})=sqrt{n}$
$endgroup$
– Robert Z
Dec 16 '18 at 6:38
1
1
$begingroup$
@Saradamani As a matter of fact, the classic proof of Stolz-Cesaro Theorem (see link above) is based on the sandwich principle...
$endgroup$
– Robert Z
Dec 16 '18 at 7:05
$begingroup$
@Saradamani As a matter of fact, the classic proof of Stolz-Cesaro Theorem (see link above) is based on the sandwich principle...
$endgroup$
– Robert Z
Dec 16 '18 at 7:05
|
show 5 more comments
$begingroup$
It is sufficient to obtain integral of $sqrt{x}$, when $0leq xleq 1$.
$endgroup$
add a comment |
$begingroup$
It is sufficient to obtain integral of $sqrt{x}$, when $0leq xleq 1$.
$endgroup$
add a comment |
$begingroup$
It is sufficient to obtain integral of $sqrt{x}$, when $0leq xleq 1$.
$endgroup$
It is sufficient to obtain integral of $sqrt{x}$, when $0leq xleq 1$.
answered Dec 15 '18 at 8:51
user479859user479859
1037
1037
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3040278%2fvalue-of-lim-n-to-infty-dfrac-sqrt1-sqrt2-sqrt3-sqrtn-1n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
4
$begingroup$
Well, this is just a Riemann sum.
$endgroup$
– Zacky
Dec 15 '18 at 8:45
1
$begingroup$
Oh is it? Leave it then I can do this... I forgot Reimann's sum. Sorry
$endgroup$
– Saradamani
Dec 15 '18 at 8:46
2
$begingroup$
Okay then :D Also post it as answer when you finish solving it.
$endgroup$
– Zacky
Dec 15 '18 at 8:48
$begingroup$
There are $n-1$ terms in the numerator
$endgroup$
– Shubham Johri
Dec 15 '18 at 8:51