how do we prove that a sum of two periods is still a period?
$begingroup$
Kontsevich and Zagier define periods as the values of absolutely convergent integrals $int_sigma f$ where $f$ is a rational function with rational coefficients and $sigma$ is a semi-algebraic subset of $mathbb{R}^n$. How do we prove that the sum of two such numbers is still of this form? I've tried a few things but they don't seem to work...
ag.algebraic-geometry nt.number-theory
$endgroup$
add a comment |
$begingroup$
Kontsevich and Zagier define periods as the values of absolutely convergent integrals $int_sigma f$ where $f$ is a rational function with rational coefficients and $sigma$ is a semi-algebraic subset of $mathbb{R}^n$. How do we prove that the sum of two such numbers is still of this form? I've tried a few things but they don't seem to work...
ag.algebraic-geometry nt.number-theory
$endgroup$
add a comment |
$begingroup$
Kontsevich and Zagier define periods as the values of absolutely convergent integrals $int_sigma f$ where $f$ is a rational function with rational coefficients and $sigma$ is a semi-algebraic subset of $mathbb{R}^n$. How do we prove that the sum of two such numbers is still of this form? I've tried a few things but they don't seem to work...
ag.algebraic-geometry nt.number-theory
$endgroup$
Kontsevich and Zagier define periods as the values of absolutely convergent integrals $int_sigma f$ where $f$ is a rational function with rational coefficients and $sigma$ is a semi-algebraic subset of $mathbb{R}^n$. How do we prove that the sum of two such numbers is still of this form? I've tried a few things but they don't seem to work...
ag.algebraic-geometry nt.number-theory
ag.algebraic-geometry nt.number-theory
asked Apr 2 at 14:27
periodsperiods
492
492
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $alpha$ and $beta$ be two periods corresponding respectively to two absolutely convergent integrals $int_sigma f(x)dx$ and $int_tau g(y)dy$, where $f$ (resp. $g$) is a rational function on $Bbb Q$ with $r$ (resp. $s$) variables and $sigma$ (resp. $tau$) is a semi-algebraic subset of $Bbb R^r$ (resp. $Bbb R^s$).
Setting $omega:=sigmatimesleftlbrace0rightrbracetimes(0,1)^scoprod(0,1)^rtimesleftlbrace1rightrbracetimestau$, one immediately gets that $$alpha+beta=int_omega left[(1-t)f(x)+tg(y)right]dxdydt$$which is again an absolutely convergent integral, so that $alpha+beta$ is a period.
$endgroup$
2
$begingroup$
@periods: if you're not satisfied by the answer, please tell me how to improve it.
$endgroup$
– Gaussian
Apr 2 at 18:55
$begingroup$
The "$int_sigma f$" being used as a definition of a period is presumably an ordinary volume integral - no surface integrals allowed. $omega$ has zero volume, so the integral is zero.
$endgroup$
– Dap
23 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "504"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326977%2fhow-do-we-prove-that-a-sum-of-two-periods-is-still-a-period%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $alpha$ and $beta$ be two periods corresponding respectively to two absolutely convergent integrals $int_sigma f(x)dx$ and $int_tau g(y)dy$, where $f$ (resp. $g$) is a rational function on $Bbb Q$ with $r$ (resp. $s$) variables and $sigma$ (resp. $tau$) is a semi-algebraic subset of $Bbb R^r$ (resp. $Bbb R^s$).
Setting $omega:=sigmatimesleftlbrace0rightrbracetimes(0,1)^scoprod(0,1)^rtimesleftlbrace1rightrbracetimestau$, one immediately gets that $$alpha+beta=int_omega left[(1-t)f(x)+tg(y)right]dxdydt$$which is again an absolutely convergent integral, so that $alpha+beta$ is a period.
$endgroup$
2
$begingroup$
@periods: if you're not satisfied by the answer, please tell me how to improve it.
$endgroup$
– Gaussian
Apr 2 at 18:55
$begingroup$
The "$int_sigma f$" being used as a definition of a period is presumably an ordinary volume integral - no surface integrals allowed. $omega$ has zero volume, so the integral is zero.
$endgroup$
– Dap
23 hours ago
add a comment |
$begingroup$
Let $alpha$ and $beta$ be two periods corresponding respectively to two absolutely convergent integrals $int_sigma f(x)dx$ and $int_tau g(y)dy$, where $f$ (resp. $g$) is a rational function on $Bbb Q$ with $r$ (resp. $s$) variables and $sigma$ (resp. $tau$) is a semi-algebraic subset of $Bbb R^r$ (resp. $Bbb R^s$).
Setting $omega:=sigmatimesleftlbrace0rightrbracetimes(0,1)^scoprod(0,1)^rtimesleftlbrace1rightrbracetimestau$, one immediately gets that $$alpha+beta=int_omega left[(1-t)f(x)+tg(y)right]dxdydt$$which is again an absolutely convergent integral, so that $alpha+beta$ is a period.
$endgroup$
2
$begingroup$
@periods: if you're not satisfied by the answer, please tell me how to improve it.
$endgroup$
– Gaussian
Apr 2 at 18:55
$begingroup$
The "$int_sigma f$" being used as a definition of a period is presumably an ordinary volume integral - no surface integrals allowed. $omega$ has zero volume, so the integral is zero.
$endgroup$
– Dap
23 hours ago
add a comment |
$begingroup$
Let $alpha$ and $beta$ be two periods corresponding respectively to two absolutely convergent integrals $int_sigma f(x)dx$ and $int_tau g(y)dy$, where $f$ (resp. $g$) is a rational function on $Bbb Q$ with $r$ (resp. $s$) variables and $sigma$ (resp. $tau$) is a semi-algebraic subset of $Bbb R^r$ (resp. $Bbb R^s$).
Setting $omega:=sigmatimesleftlbrace0rightrbracetimes(0,1)^scoprod(0,1)^rtimesleftlbrace1rightrbracetimestau$, one immediately gets that $$alpha+beta=int_omega left[(1-t)f(x)+tg(y)right]dxdydt$$which is again an absolutely convergent integral, so that $alpha+beta$ is a period.
$endgroup$
Let $alpha$ and $beta$ be two periods corresponding respectively to two absolutely convergent integrals $int_sigma f(x)dx$ and $int_tau g(y)dy$, where $f$ (resp. $g$) is a rational function on $Bbb Q$ with $r$ (resp. $s$) variables and $sigma$ (resp. $tau$) is a semi-algebraic subset of $Bbb R^r$ (resp. $Bbb R^s$).
Setting $omega:=sigmatimesleftlbrace0rightrbracetimes(0,1)^scoprod(0,1)^rtimesleftlbrace1rightrbracetimestau$, one immediately gets that $$alpha+beta=int_omega left[(1-t)f(x)+tg(y)right]dxdydt$$which is again an absolutely convergent integral, so that $alpha+beta$ is a period.
answered Apr 2 at 15:15
GaussianGaussian
37118
37118
2
$begingroup$
@periods: if you're not satisfied by the answer, please tell me how to improve it.
$endgroup$
– Gaussian
Apr 2 at 18:55
$begingroup$
The "$int_sigma f$" being used as a definition of a period is presumably an ordinary volume integral - no surface integrals allowed. $omega$ has zero volume, so the integral is zero.
$endgroup$
– Dap
23 hours ago
add a comment |
2
$begingroup$
@periods: if you're not satisfied by the answer, please tell me how to improve it.
$endgroup$
– Gaussian
Apr 2 at 18:55
$begingroup$
The "$int_sigma f$" being used as a definition of a period is presumably an ordinary volume integral - no surface integrals allowed. $omega$ has zero volume, so the integral is zero.
$endgroup$
– Dap
23 hours ago
2
2
$begingroup$
@periods: if you're not satisfied by the answer, please tell me how to improve it.
$endgroup$
– Gaussian
Apr 2 at 18:55
$begingroup$
@periods: if you're not satisfied by the answer, please tell me how to improve it.
$endgroup$
– Gaussian
Apr 2 at 18:55
$begingroup$
The "$int_sigma f$" being used as a definition of a period is presumably an ordinary volume integral - no surface integrals allowed. $omega$ has zero volume, so the integral is zero.
$endgroup$
– Dap
23 hours ago
$begingroup$
The "$int_sigma f$" being used as a definition of a period is presumably an ordinary volume integral - no surface integrals allowed. $omega$ has zero volume, so the integral is zero.
$endgroup$
– Dap
23 hours ago
add a comment |
Thanks for contributing an answer to MathOverflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326977%2fhow-do-we-prove-that-a-sum-of-two-periods-is-still-a-period%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown