Skorohod Representation Theorem Application












2














I'm reading through the Skorohod representation theorem and finding this proof a little bit difficult to understand. My understanding of the proof in bullet point form is as follows:




  1. Define a new random variable Y on the same probability space as X.


  2. $Y_{n}$ has the same probability distribution as $X_{n}$ for all
    positive n.


  3. Y has the same distribution as X.


  4. $Y_{n} to Y$ as $n to infty$ with probability 1.


  5. Since g is a continuous func, $g(Y_{n}) to g(Y)$ as $n to infty$
    with probability 1.


  6. Thus $g(Y_{n}) overset{d}to g(Y)$ as $n to infty$.


  7. Lastly, we argue that $g(Y_{n})$ has the same distribution as
    $g(X_{n})$ and $g(Y)$ has the same distribution as $g(X)$ so we are
    done.



My questions are as follows: how do we get from step 2 to step 3? Is step 4 a direct result of using the Skorohod representation theorem? Why does $g(Y_{n}) to g(Y)$ simply because g is a continuous function?



enter image description here










share|cite|improve this question



























    2














    I'm reading through the Skorohod representation theorem and finding this proof a little bit difficult to understand. My understanding of the proof in bullet point form is as follows:




    1. Define a new random variable Y on the same probability space as X.


    2. $Y_{n}$ has the same probability distribution as $X_{n}$ for all
      positive n.


    3. Y has the same distribution as X.


    4. $Y_{n} to Y$ as $n to infty$ with probability 1.


    5. Since g is a continuous func, $g(Y_{n}) to g(Y)$ as $n to infty$
      with probability 1.


    6. Thus $g(Y_{n}) overset{d}to g(Y)$ as $n to infty$.


    7. Lastly, we argue that $g(Y_{n})$ has the same distribution as
      $g(X_{n})$ and $g(Y)$ has the same distribution as $g(X)$ so we are
      done.



    My questions are as follows: how do we get from step 2 to step 3? Is step 4 a direct result of using the Skorohod representation theorem? Why does $g(Y_{n}) to g(Y)$ simply because g is a continuous function?



    enter image description here










    share|cite|improve this question

























      2












      2








      2


      0





      I'm reading through the Skorohod representation theorem and finding this proof a little bit difficult to understand. My understanding of the proof in bullet point form is as follows:




      1. Define a new random variable Y on the same probability space as X.


      2. $Y_{n}$ has the same probability distribution as $X_{n}$ for all
        positive n.


      3. Y has the same distribution as X.


      4. $Y_{n} to Y$ as $n to infty$ with probability 1.


      5. Since g is a continuous func, $g(Y_{n}) to g(Y)$ as $n to infty$
        with probability 1.


      6. Thus $g(Y_{n}) overset{d}to g(Y)$ as $n to infty$.


      7. Lastly, we argue that $g(Y_{n})$ has the same distribution as
        $g(X_{n})$ and $g(Y)$ has the same distribution as $g(X)$ so we are
        done.



      My questions are as follows: how do we get from step 2 to step 3? Is step 4 a direct result of using the Skorohod representation theorem? Why does $g(Y_{n}) to g(Y)$ simply because g is a continuous function?



      enter image description here










      share|cite|improve this question













      I'm reading through the Skorohod representation theorem and finding this proof a little bit difficult to understand. My understanding of the proof in bullet point form is as follows:




      1. Define a new random variable Y on the same probability space as X.


      2. $Y_{n}$ has the same probability distribution as $X_{n}$ for all
        positive n.


      3. Y has the same distribution as X.


      4. $Y_{n} to Y$ as $n to infty$ with probability 1.


      5. Since g is a continuous func, $g(Y_{n}) to g(Y)$ as $n to infty$
        with probability 1.


      6. Thus $g(Y_{n}) overset{d}to g(Y)$ as $n to infty$.


      7. Lastly, we argue that $g(Y_{n})$ has the same distribution as
        $g(X_{n})$ and $g(Y)$ has the same distribution as $g(X)$ so we are
        done.



      My questions are as follows: how do we get from step 2 to step 3? Is step 4 a direct result of using the Skorohod representation theorem? Why does $g(Y_{n}) to g(Y)$ simply because g is a continuous function?



      enter image description here







      probability stochastic-processes






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Mar 28 '16 at 19:30









      A user

      3861416




      3861416






















          3 Answers
          3






          active

          oldest

          votes


















          1














          Step 3 doesn't follow from step 2. Assertions 2,3,4 are directly a result of the Skorohod representation theorem; they correspond to the conclusions a,b,c in the Skorohod theorem that your link points to.



          As for the claim that $g(Y_n)to g(Y)$, this follows from continuity of $g$: If $x_n$ is a sequence of real numbers that converge to $x$, then $g(x_n)to g(x)$ whenever $x$ is a continuity point for the function $g$. Applying this to $Y_n$ and $Y$, this means
          $$
          {Y_nto Y}subset {g(Y_n)to g(Y)}$$
          since, by assumption, $g$ is continuous at every point. But the event on the LHS has probability 1, therefore the event on the RHS also has probability 1.






          share|cite|improve this answer





























            0














            Fisrt let me clarify something about your question because I think there is a little confusion here. Your question is not about the proof of the Skorohod representation theorem you are referring to (theorem 25) but about the proof the theorem (theorem 26) that uses Skorohod representation theorem.



            So now to answer your question you don't get step 2 from step 3, you get them both from the Skorohod representation theorem, the fact that those variables exist are a consequence of the theorem. Step 4 is also a property that you owe to this theorem.



            For the last question, ot is as follows. As $Y_nto Y$ almost surely there exists a set let's say $A$ of probability one where for every $omegain A$ you have $Y_n(omega) to Y(omega)$ (here we can take the same $omega$ as all variables live in the same space which the main tool behind the theorem 25). So from the continuity property of $g$ on this very same set $A$, you have for every $omegain A$, $g(Y_n(omega))to g(y(omega))$ as $Y_n(omega) to Y(omega)$, id est with probability one, which is nothing else than the conclusion of theorem 26.



            Is the argument sufficiently detailed ?



            Edit : step 7 :



            As you noted you have $X_n$, $X$ and $Y_n$, $Y$ that have the same law. And $Y_n$ converging almost surely to $Y$. Almost sur convergence implies convergence in distribution so $Y_n$ also converge to $Y$ in distribution. As the laws of $Y_n$ and $X_n$ are equals you can replace as much $Y_n$ as you want and preserve the convergence in distribution moreover converging in distribution to $Y$ is equivalent to converge to $X$ once again the space $Omega$ is irrelevant only matters the probability of the events which are equals as long as the laws are left unchanged. Passing to $g$ doesn't do any harm to this line of reasoning, as again the laws of $g(X_n)$ are the same the laws of $g(Y_n)$ (and the same holds for $g(Y)$ and $g(X)$). All this is pretty trivial but only when you can grab it with your hands. Again think of convergence in distribution as something you need laws and events to get, while almost sure convergence needs to holds for every almost every points of a probability space $Omega$ but for this mode of convergence the laws of the random variables are irrelevant. Hope this helps a bit.

            Best regards






            share|cite|improve this answer























            • Thanks for your answer! How is step 7 made?
              – A user
              Mar 29 '16 at 17:44



















            0














            Step 7. Use the following claim: If $Ysim Z$ and $g$ measurable then $$g(Y)sim g(Z).$$
            In fact, assume that $mathbb{P}_Y=mathbb{P}_Z$. Since
            $$ {g(Y)}^{-1}(A) = Y^{-1}(g^{-1}(A)) ~text{and}~ {g(Z)}^{-1}(A) = Z^{-1}(g^{-1}(A))$$
            for all measurable $A$ we have
            $$ mathbb{P}_{g(Y)}(A) = mathbb{P}_Y(g^{-1}(A)) = mathbb{P}_Z(g^{-1}(A)) =mathbb{P}_{g(Z)}(A) $$
            for all measurable $A$.



            Step 5. Moreover, if $Y_nto Y$ with probability 1 and $g$ is $mathbb{P}_Y$-a.s. continuous then $g(Y_n)to g(Y)$ with probability 1.






            share|cite|improve this answer























              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1717602%2fskorohod-representation-theorem-application%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1














              Step 3 doesn't follow from step 2. Assertions 2,3,4 are directly a result of the Skorohod representation theorem; they correspond to the conclusions a,b,c in the Skorohod theorem that your link points to.



              As for the claim that $g(Y_n)to g(Y)$, this follows from continuity of $g$: If $x_n$ is a sequence of real numbers that converge to $x$, then $g(x_n)to g(x)$ whenever $x$ is a continuity point for the function $g$. Applying this to $Y_n$ and $Y$, this means
              $$
              {Y_nto Y}subset {g(Y_n)to g(Y)}$$
              since, by assumption, $g$ is continuous at every point. But the event on the LHS has probability 1, therefore the event on the RHS also has probability 1.






              share|cite|improve this answer


























                1














                Step 3 doesn't follow from step 2. Assertions 2,3,4 are directly a result of the Skorohod representation theorem; they correspond to the conclusions a,b,c in the Skorohod theorem that your link points to.



                As for the claim that $g(Y_n)to g(Y)$, this follows from continuity of $g$: If $x_n$ is a sequence of real numbers that converge to $x$, then $g(x_n)to g(x)$ whenever $x$ is a continuity point for the function $g$. Applying this to $Y_n$ and $Y$, this means
                $$
                {Y_nto Y}subset {g(Y_n)to g(Y)}$$
                since, by assumption, $g$ is continuous at every point. But the event on the LHS has probability 1, therefore the event on the RHS also has probability 1.






                share|cite|improve this answer
























                  1












                  1








                  1






                  Step 3 doesn't follow from step 2. Assertions 2,3,4 are directly a result of the Skorohod representation theorem; they correspond to the conclusions a,b,c in the Skorohod theorem that your link points to.



                  As for the claim that $g(Y_n)to g(Y)$, this follows from continuity of $g$: If $x_n$ is a sequence of real numbers that converge to $x$, then $g(x_n)to g(x)$ whenever $x$ is a continuity point for the function $g$. Applying this to $Y_n$ and $Y$, this means
                  $$
                  {Y_nto Y}subset {g(Y_n)to g(Y)}$$
                  since, by assumption, $g$ is continuous at every point. But the event on the LHS has probability 1, therefore the event on the RHS also has probability 1.






                  share|cite|improve this answer












                  Step 3 doesn't follow from step 2. Assertions 2,3,4 are directly a result of the Skorohod representation theorem; they correspond to the conclusions a,b,c in the Skorohod theorem that your link points to.



                  As for the claim that $g(Y_n)to g(Y)$, this follows from continuity of $g$: If $x_n$ is a sequence of real numbers that converge to $x$, then $g(x_n)to g(x)$ whenever $x$ is a continuity point for the function $g$. Applying this to $Y_n$ and $Y$, this means
                  $$
                  {Y_nto Y}subset {g(Y_n)to g(Y)}$$
                  since, by assumption, $g$ is continuous at every point. But the event on the LHS has probability 1, therefore the event on the RHS also has probability 1.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Mar 28 '16 at 20:47









                  grand_chat

                  20k11225




                  20k11225























                      0














                      Fisrt let me clarify something about your question because I think there is a little confusion here. Your question is not about the proof of the Skorohod representation theorem you are referring to (theorem 25) but about the proof the theorem (theorem 26) that uses Skorohod representation theorem.



                      So now to answer your question you don't get step 2 from step 3, you get them both from the Skorohod representation theorem, the fact that those variables exist are a consequence of the theorem. Step 4 is also a property that you owe to this theorem.



                      For the last question, ot is as follows. As $Y_nto Y$ almost surely there exists a set let's say $A$ of probability one where for every $omegain A$ you have $Y_n(omega) to Y(omega)$ (here we can take the same $omega$ as all variables live in the same space which the main tool behind the theorem 25). So from the continuity property of $g$ on this very same set $A$, you have for every $omegain A$, $g(Y_n(omega))to g(y(omega))$ as $Y_n(omega) to Y(omega)$, id est with probability one, which is nothing else than the conclusion of theorem 26.



                      Is the argument sufficiently detailed ?



                      Edit : step 7 :



                      As you noted you have $X_n$, $X$ and $Y_n$, $Y$ that have the same law. And $Y_n$ converging almost surely to $Y$. Almost sur convergence implies convergence in distribution so $Y_n$ also converge to $Y$ in distribution. As the laws of $Y_n$ and $X_n$ are equals you can replace as much $Y_n$ as you want and preserve the convergence in distribution moreover converging in distribution to $Y$ is equivalent to converge to $X$ once again the space $Omega$ is irrelevant only matters the probability of the events which are equals as long as the laws are left unchanged. Passing to $g$ doesn't do any harm to this line of reasoning, as again the laws of $g(X_n)$ are the same the laws of $g(Y_n)$ (and the same holds for $g(Y)$ and $g(X)$). All this is pretty trivial but only when you can grab it with your hands. Again think of convergence in distribution as something you need laws and events to get, while almost sure convergence needs to holds for every almost every points of a probability space $Omega$ but for this mode of convergence the laws of the random variables are irrelevant. Hope this helps a bit.

                      Best regards






                      share|cite|improve this answer























                      • Thanks for your answer! How is step 7 made?
                        – A user
                        Mar 29 '16 at 17:44
















                      0














                      Fisrt let me clarify something about your question because I think there is a little confusion here. Your question is not about the proof of the Skorohod representation theorem you are referring to (theorem 25) but about the proof the theorem (theorem 26) that uses Skorohod representation theorem.



                      So now to answer your question you don't get step 2 from step 3, you get them both from the Skorohod representation theorem, the fact that those variables exist are a consequence of the theorem. Step 4 is also a property that you owe to this theorem.



                      For the last question, ot is as follows. As $Y_nto Y$ almost surely there exists a set let's say $A$ of probability one where for every $omegain A$ you have $Y_n(omega) to Y(omega)$ (here we can take the same $omega$ as all variables live in the same space which the main tool behind the theorem 25). So from the continuity property of $g$ on this very same set $A$, you have for every $omegain A$, $g(Y_n(omega))to g(y(omega))$ as $Y_n(omega) to Y(omega)$, id est with probability one, which is nothing else than the conclusion of theorem 26.



                      Is the argument sufficiently detailed ?



                      Edit : step 7 :



                      As you noted you have $X_n$, $X$ and $Y_n$, $Y$ that have the same law. And $Y_n$ converging almost surely to $Y$. Almost sur convergence implies convergence in distribution so $Y_n$ also converge to $Y$ in distribution. As the laws of $Y_n$ and $X_n$ are equals you can replace as much $Y_n$ as you want and preserve the convergence in distribution moreover converging in distribution to $Y$ is equivalent to converge to $X$ once again the space $Omega$ is irrelevant only matters the probability of the events which are equals as long as the laws are left unchanged. Passing to $g$ doesn't do any harm to this line of reasoning, as again the laws of $g(X_n)$ are the same the laws of $g(Y_n)$ (and the same holds for $g(Y)$ and $g(X)$). All this is pretty trivial but only when you can grab it with your hands. Again think of convergence in distribution as something you need laws and events to get, while almost sure convergence needs to holds for every almost every points of a probability space $Omega$ but for this mode of convergence the laws of the random variables are irrelevant. Hope this helps a bit.

                      Best regards






                      share|cite|improve this answer























                      • Thanks for your answer! How is step 7 made?
                        – A user
                        Mar 29 '16 at 17:44














                      0












                      0








                      0






                      Fisrt let me clarify something about your question because I think there is a little confusion here. Your question is not about the proof of the Skorohod representation theorem you are referring to (theorem 25) but about the proof the theorem (theorem 26) that uses Skorohod representation theorem.



                      So now to answer your question you don't get step 2 from step 3, you get them both from the Skorohod representation theorem, the fact that those variables exist are a consequence of the theorem. Step 4 is also a property that you owe to this theorem.



                      For the last question, ot is as follows. As $Y_nto Y$ almost surely there exists a set let's say $A$ of probability one where for every $omegain A$ you have $Y_n(omega) to Y(omega)$ (here we can take the same $omega$ as all variables live in the same space which the main tool behind the theorem 25). So from the continuity property of $g$ on this very same set $A$, you have for every $omegain A$, $g(Y_n(omega))to g(y(omega))$ as $Y_n(omega) to Y(omega)$, id est with probability one, which is nothing else than the conclusion of theorem 26.



                      Is the argument sufficiently detailed ?



                      Edit : step 7 :



                      As you noted you have $X_n$, $X$ and $Y_n$, $Y$ that have the same law. And $Y_n$ converging almost surely to $Y$. Almost sur convergence implies convergence in distribution so $Y_n$ also converge to $Y$ in distribution. As the laws of $Y_n$ and $X_n$ are equals you can replace as much $Y_n$ as you want and preserve the convergence in distribution moreover converging in distribution to $Y$ is equivalent to converge to $X$ once again the space $Omega$ is irrelevant only matters the probability of the events which are equals as long as the laws are left unchanged. Passing to $g$ doesn't do any harm to this line of reasoning, as again the laws of $g(X_n)$ are the same the laws of $g(Y_n)$ (and the same holds for $g(Y)$ and $g(X)$). All this is pretty trivial but only when you can grab it with your hands. Again think of convergence in distribution as something you need laws and events to get, while almost sure convergence needs to holds for every almost every points of a probability space $Omega$ but for this mode of convergence the laws of the random variables are irrelevant. Hope this helps a bit.

                      Best regards






                      share|cite|improve this answer














                      Fisrt let me clarify something about your question because I think there is a little confusion here. Your question is not about the proof of the Skorohod representation theorem you are referring to (theorem 25) but about the proof the theorem (theorem 26) that uses Skorohod representation theorem.



                      So now to answer your question you don't get step 2 from step 3, you get them both from the Skorohod representation theorem, the fact that those variables exist are a consequence of the theorem. Step 4 is also a property that you owe to this theorem.



                      For the last question, ot is as follows. As $Y_nto Y$ almost surely there exists a set let's say $A$ of probability one where for every $omegain A$ you have $Y_n(omega) to Y(omega)$ (here we can take the same $omega$ as all variables live in the same space which the main tool behind the theorem 25). So from the continuity property of $g$ on this very same set $A$, you have for every $omegain A$, $g(Y_n(omega))to g(y(omega))$ as $Y_n(omega) to Y(omega)$, id est with probability one, which is nothing else than the conclusion of theorem 26.



                      Is the argument sufficiently detailed ?



                      Edit : step 7 :



                      As you noted you have $X_n$, $X$ and $Y_n$, $Y$ that have the same law. And $Y_n$ converging almost surely to $Y$. Almost sur convergence implies convergence in distribution so $Y_n$ also converge to $Y$ in distribution. As the laws of $Y_n$ and $X_n$ are equals you can replace as much $Y_n$ as you want and preserve the convergence in distribution moreover converging in distribution to $Y$ is equivalent to converge to $X$ once again the space $Omega$ is irrelevant only matters the probability of the events which are equals as long as the laws are left unchanged. Passing to $g$ doesn't do any harm to this line of reasoning, as again the laws of $g(X_n)$ are the same the laws of $g(Y_n)$ (and the same holds for $g(Y)$ and $g(X)$). All this is pretty trivial but only when you can grab it with your hands. Again think of convergence in distribution as something you need laws and events to get, while almost sure convergence needs to holds for every almost every points of a probability space $Omega$ but for this mode of convergence the laws of the random variables are irrelevant. Hope this helps a bit.

                      Best regards







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited Mar 29 '16 at 19:14

























                      answered Mar 28 '16 at 20:56









                      TheBridge

                      3,76611424




                      3,76611424












                      • Thanks for your answer! How is step 7 made?
                        – A user
                        Mar 29 '16 at 17:44


















                      • Thanks for your answer! How is step 7 made?
                        – A user
                        Mar 29 '16 at 17:44
















                      Thanks for your answer! How is step 7 made?
                      – A user
                      Mar 29 '16 at 17:44




                      Thanks for your answer! How is step 7 made?
                      – A user
                      Mar 29 '16 at 17:44











                      0














                      Step 7. Use the following claim: If $Ysim Z$ and $g$ measurable then $$g(Y)sim g(Z).$$
                      In fact, assume that $mathbb{P}_Y=mathbb{P}_Z$. Since
                      $$ {g(Y)}^{-1}(A) = Y^{-1}(g^{-1}(A)) ~text{and}~ {g(Z)}^{-1}(A) = Z^{-1}(g^{-1}(A))$$
                      for all measurable $A$ we have
                      $$ mathbb{P}_{g(Y)}(A) = mathbb{P}_Y(g^{-1}(A)) = mathbb{P}_Z(g^{-1}(A)) =mathbb{P}_{g(Z)}(A) $$
                      for all measurable $A$.



                      Step 5. Moreover, if $Y_nto Y$ with probability 1 and $g$ is $mathbb{P}_Y$-a.s. continuous then $g(Y_n)to g(Y)$ with probability 1.






                      share|cite|improve this answer




























                        0














                        Step 7. Use the following claim: If $Ysim Z$ and $g$ measurable then $$g(Y)sim g(Z).$$
                        In fact, assume that $mathbb{P}_Y=mathbb{P}_Z$. Since
                        $$ {g(Y)}^{-1}(A) = Y^{-1}(g^{-1}(A)) ~text{and}~ {g(Z)}^{-1}(A) = Z^{-1}(g^{-1}(A))$$
                        for all measurable $A$ we have
                        $$ mathbb{P}_{g(Y)}(A) = mathbb{P}_Y(g^{-1}(A)) = mathbb{P}_Z(g^{-1}(A)) =mathbb{P}_{g(Z)}(A) $$
                        for all measurable $A$.



                        Step 5. Moreover, if $Y_nto Y$ with probability 1 and $g$ is $mathbb{P}_Y$-a.s. continuous then $g(Y_n)to g(Y)$ with probability 1.






                        share|cite|improve this answer


























                          0












                          0








                          0






                          Step 7. Use the following claim: If $Ysim Z$ and $g$ measurable then $$g(Y)sim g(Z).$$
                          In fact, assume that $mathbb{P}_Y=mathbb{P}_Z$. Since
                          $$ {g(Y)}^{-1}(A) = Y^{-1}(g^{-1}(A)) ~text{and}~ {g(Z)}^{-1}(A) = Z^{-1}(g^{-1}(A))$$
                          for all measurable $A$ we have
                          $$ mathbb{P}_{g(Y)}(A) = mathbb{P}_Y(g^{-1}(A)) = mathbb{P}_Z(g^{-1}(A)) =mathbb{P}_{g(Z)}(A) $$
                          for all measurable $A$.



                          Step 5. Moreover, if $Y_nto Y$ with probability 1 and $g$ is $mathbb{P}_Y$-a.s. continuous then $g(Y_n)to g(Y)$ with probability 1.






                          share|cite|improve this answer














                          Step 7. Use the following claim: If $Ysim Z$ and $g$ measurable then $$g(Y)sim g(Z).$$
                          In fact, assume that $mathbb{P}_Y=mathbb{P}_Z$. Since
                          $$ {g(Y)}^{-1}(A) = Y^{-1}(g^{-1}(A)) ~text{and}~ {g(Z)}^{-1}(A) = Z^{-1}(g^{-1}(A))$$
                          for all measurable $A$ we have
                          $$ mathbb{P}_{g(Y)}(A) = mathbb{P}_Y(g^{-1}(A)) = mathbb{P}_Z(g^{-1}(A)) =mathbb{P}_{g(Z)}(A) $$
                          for all measurable $A$.



                          Step 5. Moreover, if $Y_nto Y$ with probability 1 and $g$ is $mathbb{P}_Y$-a.s. continuous then $g(Y_n)to g(Y)$ with probability 1.







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Dec 10 at 16:39

























                          answered Nov 19 at 22:43









                          Daniel Camarena Perez

                          57538




                          57538






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.





                              Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                              Please pay close attention to the following guidance:


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1717602%2fskorohod-representation-theorem-application%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              How to change which sound is reproduced for terminal bell?

                              Can I use Tabulator js library in my java Spring + Thymeleaf project?

                              Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents