Compute the limit:












0












$begingroup$


$$ lim_{x geq 0}{frac{1-cos^3(x)}{xsin(2x)}}$$
I tried:
$$lim_{x geq 0}{{frac{1-cos^2(x)*cos(x)}{2*x*sin^2(x)cos^2(x)}}}$$
$$lim_{x geq 0}{frac{cos^2x+sin^2x-cos^2(x)cos(x)}{2*x*sin^2x*cos^2(x)}}$$
$$lim_{x geq 0}{frac{cos^2(x)+sin^2(x)-(1-sin^2(x))cos(x)}{2*x*sin^2(x)*cos^2(x)}}$$
$$lim_{x geq 0}{frac{cos^2(x)+sin^2(x)-cos(x)+sin^2(x)cos(x)}{2*x*sin^2(x)*cos^2(x)}}$$
Somewhere I over-complicated and I don't know how to continue or the other route that I should take...










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    $$ lim_{x geq 0}{frac{1-cos^3(x)}{xsin(2x)}}$$
    I tried:
    $$lim_{x geq 0}{{frac{1-cos^2(x)*cos(x)}{2*x*sin^2(x)cos^2(x)}}}$$
    $$lim_{x geq 0}{frac{cos^2x+sin^2x-cos^2(x)cos(x)}{2*x*sin^2x*cos^2(x)}}$$
    $$lim_{x geq 0}{frac{cos^2(x)+sin^2(x)-(1-sin^2(x))cos(x)}{2*x*sin^2(x)*cos^2(x)}}$$
    $$lim_{x geq 0}{frac{cos^2(x)+sin^2(x)-cos(x)+sin^2(x)cos(x)}{2*x*sin^2(x)*cos^2(x)}}$$
    Somewhere I over-complicated and I don't know how to continue or the other route that I should take...










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      $$ lim_{x geq 0}{frac{1-cos^3(x)}{xsin(2x)}}$$
      I tried:
      $$lim_{x geq 0}{{frac{1-cos^2(x)*cos(x)}{2*x*sin^2(x)cos^2(x)}}}$$
      $$lim_{x geq 0}{frac{cos^2x+sin^2x-cos^2(x)cos(x)}{2*x*sin^2x*cos^2(x)}}$$
      $$lim_{x geq 0}{frac{cos^2(x)+sin^2(x)-(1-sin^2(x))cos(x)}{2*x*sin^2(x)*cos^2(x)}}$$
      $$lim_{x geq 0}{frac{cos^2(x)+sin^2(x)-cos(x)+sin^2(x)cos(x)}{2*x*sin^2(x)*cos^2(x)}}$$
      Somewhere I over-complicated and I don't know how to continue or the other route that I should take...










      share|cite|improve this question











      $endgroup$




      $$ lim_{x geq 0}{frac{1-cos^3(x)}{xsin(2x)}}$$
      I tried:
      $$lim_{x geq 0}{{frac{1-cos^2(x)*cos(x)}{2*x*sin^2(x)cos^2(x)}}}$$
      $$lim_{x geq 0}{frac{cos^2x+sin^2x-cos^2(x)cos(x)}{2*x*sin^2x*cos^2(x)}}$$
      $$lim_{x geq 0}{frac{cos^2(x)+sin^2(x)-(1-sin^2(x))cos(x)}{2*x*sin^2(x)*cos^2(x)}}$$
      $$lim_{x geq 0}{frac{cos^2(x)+sin^2(x)-cos(x)+sin^2(x)cos(x)}{2*x*sin^2(x)*cos^2(x)}}$$
      Somewhere I over-complicated and I don't know how to continue or the other route that I should take...







      limits trigonometry






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 9 '18 at 0:48









      Key Flex

      8,61861233




      8,61861233










      asked Dec 8 '18 at 16:27









      Bili DebiliBili Debili

      1428




      1428






















          5 Answers
          5






          active

          oldest

          votes


















          2












          $begingroup$

          $$lim_{xrightarrow0}dfrac{1-cos^3x}{xsin(2x)}$$
          Apply L'Hopital's Rule$$lim_{xrightarrow0}dfrac{1-cos^3x}{xsin(2x)}=lim_{xrightarrow0}dfrac{3cos^2xsin x}{sin(2x)+2xcos(2x)}$$
          Again apply L'Hopital's Rule
          $$lim_{xrightarrow0}dfrac{3(-sin(2x)sin x+cos^3x)}{4cos(2x)-4xsin(2x)}=dfrac34$$






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            Hint: Write
            $$frac{(1-cos(x))(1+cos(x))(cos^2(x)+cos(x)+1)}{2xsin(x)cos(x)(1+cos(x))}$$






            share|cite|improve this answer









            $endgroup$





















              1












              $begingroup$

              begin{align}lim_{x to 0}frac{1-cos^3x}{x sin (2x)}&= lim_{x to 0}frac{1-left( 1-frac{x^2}2right)^3}{2x^2}\
              &= lim_{x to 0} frac{1-(1-frac{3x^2}2)}{2x^2} \
              &= lim_{x to 0} frac{frac32x^2}{2x^2}\
              &= frac34end{align}






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                What is the step in between the first computation, where you get rid of trigonometric identities
                $endgroup$
                – Bili Debili
                Dec 8 '18 at 16:44












              • $begingroup$
                taylor series, just drop the higher order terms.
                $endgroup$
                – Siong Thye Goh
                Dec 8 '18 at 16:47






              • 1




                $begingroup$
                I always suggest to include remainder terms (in little-o or big-O form) when using Taylor's expansion, especialy when we introduce to the method not expert student.
                $endgroup$
                – gimusi
                Dec 8 '18 at 17:00



















              1












              $begingroup$

              We have that



              $${frac{1-cos^3(x)}{xsin(2x)}}={frac{1-cos(x)}{x^2}}cdot(1+cos x+cos^2(x))cdotfrac12{frac{2x}{sin(2x)}}$$



              then refer to standard limits




              • $frac{1-cos(x)}{x^2}to frac12$

              • $frac{2x}{sin(2x)}to 1$


              and simply




              • $1+cos x+cos^2(x)to 3$






              share|cite|improve this answer











              $endgroup$





















                0












                $begingroup$

                Let's write the expression under limit as $$frac{1-cos ^3x}{1-cos x} cdotfrac{1-cos x} {x^2}cdotfrac{2x}{sin 2x}cdotfrac{1}{2}$$ The first fraction tends to $3$, the second one tends to $1/2$, and the third one tends to $1$ and therefore the desired limit is $3/4$.






                share|cite|improve this answer









                $endgroup$













                  Your Answer





                  StackExchange.ifUsing("editor", function () {
                  return StackExchange.using("mathjaxEditing", function () {
                  StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                  StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                  });
                  });
                  }, "mathjax-editing");

                  StackExchange.ready(function() {
                  var channelOptions = {
                  tags: "".split(" "),
                  id: "69"
                  };
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function() {
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled) {
                  StackExchange.using("snippets", function() {
                  createEditor();
                  });
                  }
                  else {
                  createEditor();
                  }
                  });

                  function createEditor() {
                  StackExchange.prepareEditor({
                  heartbeatType: 'answer',
                  autoActivateHeartbeat: false,
                  convertImagesToLinks: true,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: 10,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader: {
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  },
                  noCode: true, onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  });


                  }
                  });














                  draft saved

                  draft discarded


















                  StackExchange.ready(
                  function () {
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031313%2fcompute-the-limit%23new-answer', 'question_page');
                  }
                  );

                  Post as a guest















                  Required, but never shown

























                  5 Answers
                  5






                  active

                  oldest

                  votes








                  5 Answers
                  5






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes









                  2












                  $begingroup$

                  $$lim_{xrightarrow0}dfrac{1-cos^3x}{xsin(2x)}$$
                  Apply L'Hopital's Rule$$lim_{xrightarrow0}dfrac{1-cos^3x}{xsin(2x)}=lim_{xrightarrow0}dfrac{3cos^2xsin x}{sin(2x)+2xcos(2x)}$$
                  Again apply L'Hopital's Rule
                  $$lim_{xrightarrow0}dfrac{3(-sin(2x)sin x+cos^3x)}{4cos(2x)-4xsin(2x)}=dfrac34$$






                  share|cite|improve this answer









                  $endgroup$


















                    2












                    $begingroup$

                    $$lim_{xrightarrow0}dfrac{1-cos^3x}{xsin(2x)}$$
                    Apply L'Hopital's Rule$$lim_{xrightarrow0}dfrac{1-cos^3x}{xsin(2x)}=lim_{xrightarrow0}dfrac{3cos^2xsin x}{sin(2x)+2xcos(2x)}$$
                    Again apply L'Hopital's Rule
                    $$lim_{xrightarrow0}dfrac{3(-sin(2x)sin x+cos^3x)}{4cos(2x)-4xsin(2x)}=dfrac34$$






                    share|cite|improve this answer









                    $endgroup$
















                      2












                      2








                      2





                      $begingroup$

                      $$lim_{xrightarrow0}dfrac{1-cos^3x}{xsin(2x)}$$
                      Apply L'Hopital's Rule$$lim_{xrightarrow0}dfrac{1-cos^3x}{xsin(2x)}=lim_{xrightarrow0}dfrac{3cos^2xsin x}{sin(2x)+2xcos(2x)}$$
                      Again apply L'Hopital's Rule
                      $$lim_{xrightarrow0}dfrac{3(-sin(2x)sin x+cos^3x)}{4cos(2x)-4xsin(2x)}=dfrac34$$






                      share|cite|improve this answer









                      $endgroup$



                      $$lim_{xrightarrow0}dfrac{1-cos^3x}{xsin(2x)}$$
                      Apply L'Hopital's Rule$$lim_{xrightarrow0}dfrac{1-cos^3x}{xsin(2x)}=lim_{xrightarrow0}dfrac{3cos^2xsin x}{sin(2x)+2xcos(2x)}$$
                      Again apply L'Hopital's Rule
                      $$lim_{xrightarrow0}dfrac{3(-sin(2x)sin x+cos^3x)}{4cos(2x)-4xsin(2x)}=dfrac34$$







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Dec 8 '18 at 16:41









                      Key FlexKey Flex

                      8,61861233




                      8,61861233























                          1












                          $begingroup$

                          Hint: Write
                          $$frac{(1-cos(x))(1+cos(x))(cos^2(x)+cos(x)+1)}{2xsin(x)cos(x)(1+cos(x))}$$






                          share|cite|improve this answer









                          $endgroup$


















                            1












                            $begingroup$

                            Hint: Write
                            $$frac{(1-cos(x))(1+cos(x))(cos^2(x)+cos(x)+1)}{2xsin(x)cos(x)(1+cos(x))}$$






                            share|cite|improve this answer









                            $endgroup$
















                              1












                              1








                              1





                              $begingroup$

                              Hint: Write
                              $$frac{(1-cos(x))(1+cos(x))(cos^2(x)+cos(x)+1)}{2xsin(x)cos(x)(1+cos(x))}$$






                              share|cite|improve this answer









                              $endgroup$



                              Hint: Write
                              $$frac{(1-cos(x))(1+cos(x))(cos^2(x)+cos(x)+1)}{2xsin(x)cos(x)(1+cos(x))}$$







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Dec 8 '18 at 16:33









                              Dr. Sonnhard GraubnerDr. Sonnhard Graubner

                              77.8k42866




                              77.8k42866























                                  1












                                  $begingroup$

                                  begin{align}lim_{x to 0}frac{1-cos^3x}{x sin (2x)}&= lim_{x to 0}frac{1-left( 1-frac{x^2}2right)^3}{2x^2}\
                                  &= lim_{x to 0} frac{1-(1-frac{3x^2}2)}{2x^2} \
                                  &= lim_{x to 0} frac{frac32x^2}{2x^2}\
                                  &= frac34end{align}






                                  share|cite|improve this answer









                                  $endgroup$













                                  • $begingroup$
                                    What is the step in between the first computation, where you get rid of trigonometric identities
                                    $endgroup$
                                    – Bili Debili
                                    Dec 8 '18 at 16:44












                                  • $begingroup$
                                    taylor series, just drop the higher order terms.
                                    $endgroup$
                                    – Siong Thye Goh
                                    Dec 8 '18 at 16:47






                                  • 1




                                    $begingroup$
                                    I always suggest to include remainder terms (in little-o or big-O form) when using Taylor's expansion, especialy when we introduce to the method not expert student.
                                    $endgroup$
                                    – gimusi
                                    Dec 8 '18 at 17:00
















                                  1












                                  $begingroup$

                                  begin{align}lim_{x to 0}frac{1-cos^3x}{x sin (2x)}&= lim_{x to 0}frac{1-left( 1-frac{x^2}2right)^3}{2x^2}\
                                  &= lim_{x to 0} frac{1-(1-frac{3x^2}2)}{2x^2} \
                                  &= lim_{x to 0} frac{frac32x^2}{2x^2}\
                                  &= frac34end{align}






                                  share|cite|improve this answer









                                  $endgroup$













                                  • $begingroup$
                                    What is the step in between the first computation, where you get rid of trigonometric identities
                                    $endgroup$
                                    – Bili Debili
                                    Dec 8 '18 at 16:44












                                  • $begingroup$
                                    taylor series, just drop the higher order terms.
                                    $endgroup$
                                    – Siong Thye Goh
                                    Dec 8 '18 at 16:47






                                  • 1




                                    $begingroup$
                                    I always suggest to include remainder terms (in little-o or big-O form) when using Taylor's expansion, especialy when we introduce to the method not expert student.
                                    $endgroup$
                                    – gimusi
                                    Dec 8 '18 at 17:00














                                  1












                                  1








                                  1





                                  $begingroup$

                                  begin{align}lim_{x to 0}frac{1-cos^3x}{x sin (2x)}&= lim_{x to 0}frac{1-left( 1-frac{x^2}2right)^3}{2x^2}\
                                  &= lim_{x to 0} frac{1-(1-frac{3x^2}2)}{2x^2} \
                                  &= lim_{x to 0} frac{frac32x^2}{2x^2}\
                                  &= frac34end{align}






                                  share|cite|improve this answer









                                  $endgroup$



                                  begin{align}lim_{x to 0}frac{1-cos^3x}{x sin (2x)}&= lim_{x to 0}frac{1-left( 1-frac{x^2}2right)^3}{2x^2}\
                                  &= lim_{x to 0} frac{1-(1-frac{3x^2}2)}{2x^2} \
                                  &= lim_{x to 0} frac{frac32x^2}{2x^2}\
                                  &= frac34end{align}







                                  share|cite|improve this answer












                                  share|cite|improve this answer



                                  share|cite|improve this answer










                                  answered Dec 8 '18 at 16:37









                                  Siong Thye GohSiong Thye Goh

                                  103k1468119




                                  103k1468119












                                  • $begingroup$
                                    What is the step in between the first computation, where you get rid of trigonometric identities
                                    $endgroup$
                                    – Bili Debili
                                    Dec 8 '18 at 16:44












                                  • $begingroup$
                                    taylor series, just drop the higher order terms.
                                    $endgroup$
                                    – Siong Thye Goh
                                    Dec 8 '18 at 16:47






                                  • 1




                                    $begingroup$
                                    I always suggest to include remainder terms (in little-o or big-O form) when using Taylor's expansion, especialy when we introduce to the method not expert student.
                                    $endgroup$
                                    – gimusi
                                    Dec 8 '18 at 17:00


















                                  • $begingroup$
                                    What is the step in between the first computation, where you get rid of trigonometric identities
                                    $endgroup$
                                    – Bili Debili
                                    Dec 8 '18 at 16:44












                                  • $begingroup$
                                    taylor series, just drop the higher order terms.
                                    $endgroup$
                                    – Siong Thye Goh
                                    Dec 8 '18 at 16:47






                                  • 1




                                    $begingroup$
                                    I always suggest to include remainder terms (in little-o or big-O form) when using Taylor's expansion, especialy when we introduce to the method not expert student.
                                    $endgroup$
                                    – gimusi
                                    Dec 8 '18 at 17:00
















                                  $begingroup$
                                  What is the step in between the first computation, where you get rid of trigonometric identities
                                  $endgroup$
                                  – Bili Debili
                                  Dec 8 '18 at 16:44






                                  $begingroup$
                                  What is the step in between the first computation, where you get rid of trigonometric identities
                                  $endgroup$
                                  – Bili Debili
                                  Dec 8 '18 at 16:44














                                  $begingroup$
                                  taylor series, just drop the higher order terms.
                                  $endgroup$
                                  – Siong Thye Goh
                                  Dec 8 '18 at 16:47




                                  $begingroup$
                                  taylor series, just drop the higher order terms.
                                  $endgroup$
                                  – Siong Thye Goh
                                  Dec 8 '18 at 16:47




                                  1




                                  1




                                  $begingroup$
                                  I always suggest to include remainder terms (in little-o or big-O form) when using Taylor's expansion, especialy when we introduce to the method not expert student.
                                  $endgroup$
                                  – gimusi
                                  Dec 8 '18 at 17:00




                                  $begingroup$
                                  I always suggest to include remainder terms (in little-o or big-O form) when using Taylor's expansion, especialy when we introduce to the method not expert student.
                                  $endgroup$
                                  – gimusi
                                  Dec 8 '18 at 17:00











                                  1












                                  $begingroup$

                                  We have that



                                  $${frac{1-cos^3(x)}{xsin(2x)}}={frac{1-cos(x)}{x^2}}cdot(1+cos x+cos^2(x))cdotfrac12{frac{2x}{sin(2x)}}$$



                                  then refer to standard limits




                                  • $frac{1-cos(x)}{x^2}to frac12$

                                  • $frac{2x}{sin(2x)}to 1$


                                  and simply




                                  • $1+cos x+cos^2(x)to 3$






                                  share|cite|improve this answer











                                  $endgroup$


















                                    1












                                    $begingroup$

                                    We have that



                                    $${frac{1-cos^3(x)}{xsin(2x)}}={frac{1-cos(x)}{x^2}}cdot(1+cos x+cos^2(x))cdotfrac12{frac{2x}{sin(2x)}}$$



                                    then refer to standard limits




                                    • $frac{1-cos(x)}{x^2}to frac12$

                                    • $frac{2x}{sin(2x)}to 1$


                                    and simply




                                    • $1+cos x+cos^2(x)to 3$






                                    share|cite|improve this answer











                                    $endgroup$
















                                      1












                                      1








                                      1





                                      $begingroup$

                                      We have that



                                      $${frac{1-cos^3(x)}{xsin(2x)}}={frac{1-cos(x)}{x^2}}cdot(1+cos x+cos^2(x))cdotfrac12{frac{2x}{sin(2x)}}$$



                                      then refer to standard limits




                                      • $frac{1-cos(x)}{x^2}to frac12$

                                      • $frac{2x}{sin(2x)}to 1$


                                      and simply




                                      • $1+cos x+cos^2(x)to 3$






                                      share|cite|improve this answer











                                      $endgroup$



                                      We have that



                                      $${frac{1-cos^3(x)}{xsin(2x)}}={frac{1-cos(x)}{x^2}}cdot(1+cos x+cos^2(x))cdotfrac12{frac{2x}{sin(2x)}}$$



                                      then refer to standard limits




                                      • $frac{1-cos(x)}{x^2}to frac12$

                                      • $frac{2x}{sin(2x)}to 1$


                                      and simply




                                      • $1+cos x+cos^2(x)to 3$







                                      share|cite|improve this answer














                                      share|cite|improve this answer



                                      share|cite|improve this answer








                                      edited Dec 8 '18 at 16:59

























                                      answered Dec 8 '18 at 16:30









                                      gimusigimusi

                                      93k84594




                                      93k84594























                                          0












                                          $begingroup$

                                          Let's write the expression under limit as $$frac{1-cos ^3x}{1-cos x} cdotfrac{1-cos x} {x^2}cdotfrac{2x}{sin 2x}cdotfrac{1}{2}$$ The first fraction tends to $3$, the second one tends to $1/2$, and the third one tends to $1$ and therefore the desired limit is $3/4$.






                                          share|cite|improve this answer









                                          $endgroup$


















                                            0












                                            $begingroup$

                                            Let's write the expression under limit as $$frac{1-cos ^3x}{1-cos x} cdotfrac{1-cos x} {x^2}cdotfrac{2x}{sin 2x}cdotfrac{1}{2}$$ The first fraction tends to $3$, the second one tends to $1/2$, and the third one tends to $1$ and therefore the desired limit is $3/4$.






                                            share|cite|improve this answer









                                            $endgroup$
















                                              0












                                              0








                                              0





                                              $begingroup$

                                              Let's write the expression under limit as $$frac{1-cos ^3x}{1-cos x} cdotfrac{1-cos x} {x^2}cdotfrac{2x}{sin 2x}cdotfrac{1}{2}$$ The first fraction tends to $3$, the second one tends to $1/2$, and the third one tends to $1$ and therefore the desired limit is $3/4$.






                                              share|cite|improve this answer









                                              $endgroup$



                                              Let's write the expression under limit as $$frac{1-cos ^3x}{1-cos x} cdotfrac{1-cos x} {x^2}cdotfrac{2x}{sin 2x}cdotfrac{1}{2}$$ The first fraction tends to $3$, the second one tends to $1/2$, and the third one tends to $1$ and therefore the desired limit is $3/4$.







                                              share|cite|improve this answer












                                              share|cite|improve this answer



                                              share|cite|improve this answer










                                              answered Dec 9 '18 at 5:06









                                              Paramanand SinghParamanand Singh

                                              50.7k557168




                                              50.7k557168






























                                                  draft saved

                                                  draft discarded




















































                                                  Thanks for contributing an answer to Mathematics Stack Exchange!


                                                  • Please be sure to answer the question. Provide details and share your research!

                                                  But avoid



                                                  • Asking for help, clarification, or responding to other answers.

                                                  • Making statements based on opinion; back them up with references or personal experience.


                                                  Use MathJax to format equations. MathJax reference.


                                                  To learn more, see our tips on writing great answers.




                                                  draft saved


                                                  draft discarded














                                                  StackExchange.ready(
                                                  function () {
                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031313%2fcompute-the-limit%23new-answer', 'question_page');
                                                  }
                                                  );

                                                  Post as a guest















                                                  Required, but never shown





















































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown

































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown







                                                  Popular posts from this blog

                                                  How to change which sound is reproduced for terminal bell?

                                                  Can I use Tabulator js library in my java Spring + Thymeleaf project?

                                                  Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents