Prove a geometric sequence a, b, c from the arithmetic progression $1/(b-a)$, $1/2b$, $1/(b-c)$
$begingroup$
The given task is:
The following forms an arithmetic sequence: $$frac{1}{b-a}, frac{1}{2b}, frac{1}{b-c}.$$
Show, that $a, b, c$ forms an geometric sequence.
It's easily enough to understand that $$ frac{1}{2b}-frac{1}{b-a}=frac{1}{b-c}-frac{1}{2b} iff frac{a+b}{a-b}=frac{b+c}{b-c}$$ and that I need to prove that $$frac{b}{a}=frac{c}{b},$$ but between the two I just make it more and more complicated.
arithmetic-progressions geometric-progressions
$endgroup$
add a comment |
$begingroup$
The given task is:
The following forms an arithmetic sequence: $$frac{1}{b-a}, frac{1}{2b}, frac{1}{b-c}.$$
Show, that $a, b, c$ forms an geometric sequence.
It's easily enough to understand that $$ frac{1}{2b}-frac{1}{b-a}=frac{1}{b-c}-frac{1}{2b} iff frac{a+b}{a-b}=frac{b+c}{b-c}$$ and that I need to prove that $$frac{b}{a}=frac{c}{b},$$ but between the two I just make it more and more complicated.
arithmetic-progressions geometric-progressions
$endgroup$
$begingroup$
brilliant.org/wiki/componendo-and-dividendo
$endgroup$
– lab bhattacharjee
Dec 12 '18 at 12:34
add a comment |
$begingroup$
The given task is:
The following forms an arithmetic sequence: $$frac{1}{b-a}, frac{1}{2b}, frac{1}{b-c}.$$
Show, that $a, b, c$ forms an geometric sequence.
It's easily enough to understand that $$ frac{1}{2b}-frac{1}{b-a}=frac{1}{b-c}-frac{1}{2b} iff frac{a+b}{a-b}=frac{b+c}{b-c}$$ and that I need to prove that $$frac{b}{a}=frac{c}{b},$$ but between the two I just make it more and more complicated.
arithmetic-progressions geometric-progressions
$endgroup$
The given task is:
The following forms an arithmetic sequence: $$frac{1}{b-a}, frac{1}{2b}, frac{1}{b-c}.$$
Show, that $a, b, c$ forms an geometric sequence.
It's easily enough to understand that $$ frac{1}{2b}-frac{1}{b-a}=frac{1}{b-c}-frac{1}{2b} iff frac{a+b}{a-b}=frac{b+c}{b-c}$$ and that I need to prove that $$frac{b}{a}=frac{c}{b},$$ but between the two I just make it more and more complicated.
arithmetic-progressions geometric-progressions
arithmetic-progressions geometric-progressions
asked Dec 3 '18 at 14:52
Anna LindebergAnna Lindeberg
204
204
$begingroup$
brilliant.org/wiki/componendo-and-dividendo
$endgroup$
– lab bhattacharjee
Dec 12 '18 at 12:34
add a comment |
$begingroup$
brilliant.org/wiki/componendo-and-dividendo
$endgroup$
– lab bhattacharjee
Dec 12 '18 at 12:34
$begingroup$
brilliant.org/wiki/componendo-and-dividendo
$endgroup$
– lab bhattacharjee
Dec 12 '18 at 12:34
$begingroup$
brilliant.org/wiki/componendo-and-dividendo
$endgroup$
– lab bhattacharjee
Dec 12 '18 at 12:34
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Taking it from where you left off, use cross-products and simplify
$$(a+b)(b-c) = (a-b)(b+c) iff color{blue}{ab}-ac+b^2color{green}{-bc} = color{blue}{ab}+ac-b^2color{green}{-bc}$$
$$2b^2 = 2ac iff b^2 = ac iff frac{b}{a} = frac{c}{b}$$
$endgroup$
add a comment |
$begingroup$
We have
$$
frac1b = frac{1}{b-a} + frac1{b-c}\
(b-a)(b-c) = (b-c + b-a)b\
b^2 - ab - bc + ac = 2b^2-bc - ab\
ac = b^2
$$
and we are done.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024160%2fprove-a-geometric-sequence-a-b-c-from-the-arithmetic-progression-1-b-a-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Taking it from where you left off, use cross-products and simplify
$$(a+b)(b-c) = (a-b)(b+c) iff color{blue}{ab}-ac+b^2color{green}{-bc} = color{blue}{ab}+ac-b^2color{green}{-bc}$$
$$2b^2 = 2ac iff b^2 = ac iff frac{b}{a} = frac{c}{b}$$
$endgroup$
add a comment |
$begingroup$
Taking it from where you left off, use cross-products and simplify
$$(a+b)(b-c) = (a-b)(b+c) iff color{blue}{ab}-ac+b^2color{green}{-bc} = color{blue}{ab}+ac-b^2color{green}{-bc}$$
$$2b^2 = 2ac iff b^2 = ac iff frac{b}{a} = frac{c}{b}$$
$endgroup$
add a comment |
$begingroup$
Taking it from where you left off, use cross-products and simplify
$$(a+b)(b-c) = (a-b)(b+c) iff color{blue}{ab}-ac+b^2color{green}{-bc} = color{blue}{ab}+ac-b^2color{green}{-bc}$$
$$2b^2 = 2ac iff b^2 = ac iff frac{b}{a} = frac{c}{b}$$
$endgroup$
Taking it from where you left off, use cross-products and simplify
$$(a+b)(b-c) = (a-b)(b+c) iff color{blue}{ab}-ac+b^2color{green}{-bc} = color{blue}{ab}+ac-b^2color{green}{-bc}$$
$$2b^2 = 2ac iff b^2 = ac iff frac{b}{a} = frac{c}{b}$$
answered Dec 3 '18 at 15:02
KM101KM101
6,0251525
6,0251525
add a comment |
add a comment |
$begingroup$
We have
$$
frac1b = frac{1}{b-a} + frac1{b-c}\
(b-a)(b-c) = (b-c + b-a)b\
b^2 - ab - bc + ac = 2b^2-bc - ab\
ac = b^2
$$
and we are done.
$endgroup$
add a comment |
$begingroup$
We have
$$
frac1b = frac{1}{b-a} + frac1{b-c}\
(b-a)(b-c) = (b-c + b-a)b\
b^2 - ab - bc + ac = 2b^2-bc - ab\
ac = b^2
$$
and we are done.
$endgroup$
add a comment |
$begingroup$
We have
$$
frac1b = frac{1}{b-a} + frac1{b-c}\
(b-a)(b-c) = (b-c + b-a)b\
b^2 - ab - bc + ac = 2b^2-bc - ab\
ac = b^2
$$
and we are done.
$endgroup$
We have
$$
frac1b = frac{1}{b-a} + frac1{b-c}\
(b-a)(b-c) = (b-c + b-a)b\
b^2 - ab - bc + ac = 2b^2-bc - ab\
ac = b^2
$$
and we are done.
answered Dec 3 '18 at 15:02
ArthurArthur
116k7116198
116k7116198
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024160%2fprove-a-geometric-sequence-a-b-c-from-the-arithmetic-progression-1-b-a-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
brilliant.org/wiki/componendo-and-dividendo
$endgroup$
– lab bhattacharjee
Dec 12 '18 at 12:34