how to do this compute the matrix of $$ with respect to the basis $B={1,x,x^2}$
$begingroup$
Let $V = mathbb{R}[x]_{le2}$ be the $mathbb{R}-$vector space of polynomials
$f(x) = a_0 + a_1x + a_2x^2$ with real coefficients $a_i$ in $mathbb{R}$, of degree $le2$.
Define,
$$langle f(x),g(x)rangle =int_{-2}^{2}f(x)g(x)dx$$
Compute the matrix of $langle .,.rangle$ with respect to the basis $B = {1, x, x^2}$
linear-algebra
$endgroup$
add a comment |
$begingroup$
Let $V = mathbb{R}[x]_{le2}$ be the $mathbb{R}-$vector space of polynomials
$f(x) = a_0 + a_1x + a_2x^2$ with real coefficients $a_i$ in $mathbb{R}$, of degree $le2$.
Define,
$$langle f(x),g(x)rangle =int_{-2}^{2}f(x)g(x)dx$$
Compute the matrix of $langle .,.rangle$ with respect to the basis $B = {1, x, x^2}$
linear-algebra
$endgroup$
$begingroup$
Welcome to Math.SE! For some basic information about writing mathematics at this site see, e.g., basic help on mathjax notation, mathjax tutorial and quick reference, main meta site math tutorial and equation editing how-to.
$endgroup$
– platty
Nov 30 '18 at 2:29
add a comment |
$begingroup$
Let $V = mathbb{R}[x]_{le2}$ be the $mathbb{R}-$vector space of polynomials
$f(x) = a_0 + a_1x + a_2x^2$ with real coefficients $a_i$ in $mathbb{R}$, of degree $le2$.
Define,
$$langle f(x),g(x)rangle =int_{-2}^{2}f(x)g(x)dx$$
Compute the matrix of $langle .,.rangle$ with respect to the basis $B = {1, x, x^2}$
linear-algebra
$endgroup$
Let $V = mathbb{R}[x]_{le2}$ be the $mathbb{R}-$vector space of polynomials
$f(x) = a_0 + a_1x + a_2x^2$ with real coefficients $a_i$ in $mathbb{R}$, of degree $le2$.
Define,
$$langle f(x),g(x)rangle =int_{-2}^{2}f(x)g(x)dx$$
Compute the matrix of $langle .,.rangle$ with respect to the basis $B = {1, x, x^2}$
linear-algebra
linear-algebra
edited Nov 30 '18 at 4:44
Sujit Bhattacharyya
1,131419
1,131419
asked Nov 30 '18 at 2:24
vickyvicky
1
1
$begingroup$
Welcome to Math.SE! For some basic information about writing mathematics at this site see, e.g., basic help on mathjax notation, mathjax tutorial and quick reference, main meta site math tutorial and equation editing how-to.
$endgroup$
– platty
Nov 30 '18 at 2:29
add a comment |
$begingroup$
Welcome to Math.SE! For some basic information about writing mathematics at this site see, e.g., basic help on mathjax notation, mathjax tutorial and quick reference, main meta site math tutorial and equation editing how-to.
$endgroup$
– platty
Nov 30 '18 at 2:29
$begingroup$
Welcome to Math.SE! For some basic information about writing mathematics at this site see, e.g., basic help on mathjax notation, mathjax tutorial and quick reference, main meta site math tutorial and equation editing how-to.
$endgroup$
– platty
Nov 30 '18 at 2:29
$begingroup$
Welcome to Math.SE! For some basic information about writing mathematics at this site see, e.g., basic help on mathjax notation, mathjax tutorial and quick reference, main meta site math tutorial and equation editing how-to.
$endgroup$
– platty
Nov 30 '18 at 2:29
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Define the variables $$mathbf a = (a_0,a_1,a_2)^T, mathbf b = (b_0,b_1,b_2)^T, text{ and } P = begin{pmatrix}p_{00} & p_{01} & p_{02} \ p_{10} & p_{11} & p_{12} \ p_{20} & p_{21} & p_{22} end{pmatrix}$$ Also, let $$f(x) = a_0+a_1x+a_2x^2 text{ and } g(x) = b_0+b_1x+b_2x^2$$
Then, $P$ is a matrix for $langlecdot , cdotrangle$ iff
$$ mathbf a^T P mathbf b = langle f(x), g(x)rangle = int_{-2}^2 f(x)g(x)text dx$$
Evaluating the left-hand side gives
$$ mathbf a^T P mathbf b = sumlimits_{i=0}^2sumlimits_{j=0}^2 p_{ij}a_ib_j$$
so the $ij$-th entry of $P$ is the coefficient of $a_ib_j$. Evaluating the right-hand side gives
$$ int_{-2}^2 f(x)g(x)text dx = int_{-2}^2 (a_0+a_1x+a_2x^2)(b_0+b_1x+b_2x^2)text dx \ = 4a_0b_0 + frac{16}{3}a_0b_2 + frac{16}{3}a_1b_1 + frac{16}{3}a_2b_0 + frac{64}{5}a_2b_2$$
Putting this information together, we can deduce the entries of the matrix $P$:
$$ P = begin{pmatrix}4 & 0 & frac{16}{3} \ 0 & frac{16}{3} & 0 \ frac{16}{3} & 0 & frac{64}{5} end{pmatrix} $$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019539%2fhow-to-do-this-compute-the-matrix-of-with-respect-to-the-basis-b-1-x-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Define the variables $$mathbf a = (a_0,a_1,a_2)^T, mathbf b = (b_0,b_1,b_2)^T, text{ and } P = begin{pmatrix}p_{00} & p_{01} & p_{02} \ p_{10} & p_{11} & p_{12} \ p_{20} & p_{21} & p_{22} end{pmatrix}$$ Also, let $$f(x) = a_0+a_1x+a_2x^2 text{ and } g(x) = b_0+b_1x+b_2x^2$$
Then, $P$ is a matrix for $langlecdot , cdotrangle$ iff
$$ mathbf a^T P mathbf b = langle f(x), g(x)rangle = int_{-2}^2 f(x)g(x)text dx$$
Evaluating the left-hand side gives
$$ mathbf a^T P mathbf b = sumlimits_{i=0}^2sumlimits_{j=0}^2 p_{ij}a_ib_j$$
so the $ij$-th entry of $P$ is the coefficient of $a_ib_j$. Evaluating the right-hand side gives
$$ int_{-2}^2 f(x)g(x)text dx = int_{-2}^2 (a_0+a_1x+a_2x^2)(b_0+b_1x+b_2x^2)text dx \ = 4a_0b_0 + frac{16}{3}a_0b_2 + frac{16}{3}a_1b_1 + frac{16}{3}a_2b_0 + frac{64}{5}a_2b_2$$
Putting this information together, we can deduce the entries of the matrix $P$:
$$ P = begin{pmatrix}4 & 0 & frac{16}{3} \ 0 & frac{16}{3} & 0 \ frac{16}{3} & 0 & frac{64}{5} end{pmatrix} $$
$endgroup$
add a comment |
$begingroup$
Define the variables $$mathbf a = (a_0,a_1,a_2)^T, mathbf b = (b_0,b_1,b_2)^T, text{ and } P = begin{pmatrix}p_{00} & p_{01} & p_{02} \ p_{10} & p_{11} & p_{12} \ p_{20} & p_{21} & p_{22} end{pmatrix}$$ Also, let $$f(x) = a_0+a_1x+a_2x^2 text{ and } g(x) = b_0+b_1x+b_2x^2$$
Then, $P$ is a matrix for $langlecdot , cdotrangle$ iff
$$ mathbf a^T P mathbf b = langle f(x), g(x)rangle = int_{-2}^2 f(x)g(x)text dx$$
Evaluating the left-hand side gives
$$ mathbf a^T P mathbf b = sumlimits_{i=0}^2sumlimits_{j=0}^2 p_{ij}a_ib_j$$
so the $ij$-th entry of $P$ is the coefficient of $a_ib_j$. Evaluating the right-hand side gives
$$ int_{-2}^2 f(x)g(x)text dx = int_{-2}^2 (a_0+a_1x+a_2x^2)(b_0+b_1x+b_2x^2)text dx \ = 4a_0b_0 + frac{16}{3}a_0b_2 + frac{16}{3}a_1b_1 + frac{16}{3}a_2b_0 + frac{64}{5}a_2b_2$$
Putting this information together, we can deduce the entries of the matrix $P$:
$$ P = begin{pmatrix}4 & 0 & frac{16}{3} \ 0 & frac{16}{3} & 0 \ frac{16}{3} & 0 & frac{64}{5} end{pmatrix} $$
$endgroup$
add a comment |
$begingroup$
Define the variables $$mathbf a = (a_0,a_1,a_2)^T, mathbf b = (b_0,b_1,b_2)^T, text{ and } P = begin{pmatrix}p_{00} & p_{01} & p_{02} \ p_{10} & p_{11} & p_{12} \ p_{20} & p_{21} & p_{22} end{pmatrix}$$ Also, let $$f(x) = a_0+a_1x+a_2x^2 text{ and } g(x) = b_0+b_1x+b_2x^2$$
Then, $P$ is a matrix for $langlecdot , cdotrangle$ iff
$$ mathbf a^T P mathbf b = langle f(x), g(x)rangle = int_{-2}^2 f(x)g(x)text dx$$
Evaluating the left-hand side gives
$$ mathbf a^T P mathbf b = sumlimits_{i=0}^2sumlimits_{j=0}^2 p_{ij}a_ib_j$$
so the $ij$-th entry of $P$ is the coefficient of $a_ib_j$. Evaluating the right-hand side gives
$$ int_{-2}^2 f(x)g(x)text dx = int_{-2}^2 (a_0+a_1x+a_2x^2)(b_0+b_1x+b_2x^2)text dx \ = 4a_0b_0 + frac{16}{3}a_0b_2 + frac{16}{3}a_1b_1 + frac{16}{3}a_2b_0 + frac{64}{5}a_2b_2$$
Putting this information together, we can deduce the entries of the matrix $P$:
$$ P = begin{pmatrix}4 & 0 & frac{16}{3} \ 0 & frac{16}{3} & 0 \ frac{16}{3} & 0 & frac{64}{5} end{pmatrix} $$
$endgroup$
Define the variables $$mathbf a = (a_0,a_1,a_2)^T, mathbf b = (b_0,b_1,b_2)^T, text{ and } P = begin{pmatrix}p_{00} & p_{01} & p_{02} \ p_{10} & p_{11} & p_{12} \ p_{20} & p_{21} & p_{22} end{pmatrix}$$ Also, let $$f(x) = a_0+a_1x+a_2x^2 text{ and } g(x) = b_0+b_1x+b_2x^2$$
Then, $P$ is a matrix for $langlecdot , cdotrangle$ iff
$$ mathbf a^T P mathbf b = langle f(x), g(x)rangle = int_{-2}^2 f(x)g(x)text dx$$
Evaluating the left-hand side gives
$$ mathbf a^T P mathbf b = sumlimits_{i=0}^2sumlimits_{j=0}^2 p_{ij}a_ib_j$$
so the $ij$-th entry of $P$ is the coefficient of $a_ib_j$. Evaluating the right-hand side gives
$$ int_{-2}^2 f(x)g(x)text dx = int_{-2}^2 (a_0+a_1x+a_2x^2)(b_0+b_1x+b_2x^2)text dx \ = 4a_0b_0 + frac{16}{3}a_0b_2 + frac{16}{3}a_1b_1 + frac{16}{3}a_2b_0 + frac{64}{5}a_2b_2$$
Putting this information together, we can deduce the entries of the matrix $P$:
$$ P = begin{pmatrix}4 & 0 & frac{16}{3} \ 0 & frac{16}{3} & 0 \ frac{16}{3} & 0 & frac{64}{5} end{pmatrix} $$
answered Nov 30 '18 at 5:46
AlexanderJ93AlexanderJ93
6,163823
6,163823
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019539%2fhow-to-do-this-compute-the-matrix-of-with-respect-to-the-basis-b-1-x-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Welcome to Math.SE! For some basic information about writing mathematics at this site see, e.g., basic help on mathjax notation, mathjax tutorial and quick reference, main meta site math tutorial and equation editing how-to.
$endgroup$
– platty
Nov 30 '18 at 2:29