Co-ordinate Geometry : Circle
$begingroup$
Problem: Circles $x^2 + y^2 = 1$ and $x^2 + y^2 - 8x + 11 = 0$ cut off equal intercepts on a line through the point $(-2, frac{1}{2})$. Find the slope of the line.
Comments: First I write the family of lines passing through the given point i.e., $y - frac{1}{2} = m (x + 2)$ then by using the pythagorean theorem and the hypothesis I got a equation in $m$ i.e., $| 2m - 7/2| - |2m + 1/2| = 15 sqrt{1 + m^2}$ but the solution of this equation is lengthy.
I am seeking a shorter solution.
analytic-geometry circle
$endgroup$
add a comment |
$begingroup$
Problem: Circles $x^2 + y^2 = 1$ and $x^2 + y^2 - 8x + 11 = 0$ cut off equal intercepts on a line through the point $(-2, frac{1}{2})$. Find the slope of the line.
Comments: First I write the family of lines passing through the given point i.e., $y - frac{1}{2} = m (x + 2)$ then by using the pythagorean theorem and the hypothesis I got a equation in $m$ i.e., $| 2m - 7/2| - |2m + 1/2| = 15 sqrt{1 + m^2}$ but the solution of this equation is lengthy.
I am seeking a shorter solution.
analytic-geometry circle
$endgroup$
$begingroup$
Check case when $2m$ is between $-infty,-1/2,0; 0,7/2; 7/2,infty$
$endgroup$
– lab bhattacharjee
Nov 30 '18 at 5:39
add a comment |
$begingroup$
Problem: Circles $x^2 + y^2 = 1$ and $x^2 + y^2 - 8x + 11 = 0$ cut off equal intercepts on a line through the point $(-2, frac{1}{2})$. Find the slope of the line.
Comments: First I write the family of lines passing through the given point i.e., $y - frac{1}{2} = m (x + 2)$ then by using the pythagorean theorem and the hypothesis I got a equation in $m$ i.e., $| 2m - 7/2| - |2m + 1/2| = 15 sqrt{1 + m^2}$ but the solution of this equation is lengthy.
I am seeking a shorter solution.
analytic-geometry circle
$endgroup$
Problem: Circles $x^2 + y^2 = 1$ and $x^2 + y^2 - 8x + 11 = 0$ cut off equal intercepts on a line through the point $(-2, frac{1}{2})$. Find the slope of the line.
Comments: First I write the family of lines passing through the given point i.e., $y - frac{1}{2} = m (x + 2)$ then by using the pythagorean theorem and the hypothesis I got a equation in $m$ i.e., $| 2m - 7/2| - |2m + 1/2| = 15 sqrt{1 + m^2}$ but the solution of this equation is lengthy.
I am seeking a shorter solution.
analytic-geometry circle
analytic-geometry circle
asked Nov 30 '18 at 4:35
prashant sharmaprashant sharma
757
757
$begingroup$
Check case when $2m$ is between $-infty,-1/2,0; 0,7/2; 7/2,infty$
$endgroup$
– lab bhattacharjee
Nov 30 '18 at 5:39
add a comment |
$begingroup$
Check case when $2m$ is between $-infty,-1/2,0; 0,7/2; 7/2,infty$
$endgroup$
– lab bhattacharjee
Nov 30 '18 at 5:39
$begingroup$
Check case when $2m$ is between $-infty,-1/2,0; 0,7/2; 7/2,infty$
$endgroup$
– lab bhattacharjee
Nov 30 '18 at 5:39
$begingroup$
Check case when $2m$ is between $-infty,-1/2,0; 0,7/2; 7/2,infty$
$endgroup$
– lab bhattacharjee
Nov 30 '18 at 5:39
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Line $$2mx-2y+4m+1=0 tag{1}$$
First circle $$x^2+y^2=1$$
centre $O=(0,0)$, radius $r_1=1$
distance of $O$ from $(1)$: $$d_1=left| frac{4m+1}{2sqrt{m^2+1}} right|$$
Second circle $$x^2+y^2-8x+11=0$$
centre $P=(4,0)$, radius $r_2=sqrt{4^2-11}=sqrt{5}$
distance of $P$ from $(1)$: $$d_2=left| frac{12m+1}{2sqrt{m^2+1}} right|$$
Equating semi-chord length: $r^2-d^2$
begin{align}
r_1^2-d_1^2 &= r_2^2-d_2^2 \
1-frac{(4m+1)^2}{4(m^2+1)} &=
5-frac{(12m+1)^2}{4(m^2+1)} \
m &= frac{-1pm sqrt{29}}{14}
end{align}
Only the negative root gives intersections:
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019642%2fco-ordinate-geometry-circle%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Line $$2mx-2y+4m+1=0 tag{1}$$
First circle $$x^2+y^2=1$$
centre $O=(0,0)$, radius $r_1=1$
distance of $O$ from $(1)$: $$d_1=left| frac{4m+1}{2sqrt{m^2+1}} right|$$
Second circle $$x^2+y^2-8x+11=0$$
centre $P=(4,0)$, radius $r_2=sqrt{4^2-11}=sqrt{5}$
distance of $P$ from $(1)$: $$d_2=left| frac{12m+1}{2sqrt{m^2+1}} right|$$
Equating semi-chord length: $r^2-d^2$
begin{align}
r_1^2-d_1^2 &= r_2^2-d_2^2 \
1-frac{(4m+1)^2}{4(m^2+1)} &=
5-frac{(12m+1)^2}{4(m^2+1)} \
m &= frac{-1pm sqrt{29}}{14}
end{align}
Only the negative root gives intersections:
$endgroup$
add a comment |
$begingroup$
Line $$2mx-2y+4m+1=0 tag{1}$$
First circle $$x^2+y^2=1$$
centre $O=(0,0)$, radius $r_1=1$
distance of $O$ from $(1)$: $$d_1=left| frac{4m+1}{2sqrt{m^2+1}} right|$$
Second circle $$x^2+y^2-8x+11=0$$
centre $P=(4,0)$, radius $r_2=sqrt{4^2-11}=sqrt{5}$
distance of $P$ from $(1)$: $$d_2=left| frac{12m+1}{2sqrt{m^2+1}} right|$$
Equating semi-chord length: $r^2-d^2$
begin{align}
r_1^2-d_1^2 &= r_2^2-d_2^2 \
1-frac{(4m+1)^2}{4(m^2+1)} &=
5-frac{(12m+1)^2}{4(m^2+1)} \
m &= frac{-1pm sqrt{29}}{14}
end{align}
Only the negative root gives intersections:
$endgroup$
add a comment |
$begingroup$
Line $$2mx-2y+4m+1=0 tag{1}$$
First circle $$x^2+y^2=1$$
centre $O=(0,0)$, radius $r_1=1$
distance of $O$ from $(1)$: $$d_1=left| frac{4m+1}{2sqrt{m^2+1}} right|$$
Second circle $$x^2+y^2-8x+11=0$$
centre $P=(4,0)$, radius $r_2=sqrt{4^2-11}=sqrt{5}$
distance of $P$ from $(1)$: $$d_2=left| frac{12m+1}{2sqrt{m^2+1}} right|$$
Equating semi-chord length: $r^2-d^2$
begin{align}
r_1^2-d_1^2 &= r_2^2-d_2^2 \
1-frac{(4m+1)^2}{4(m^2+1)} &=
5-frac{(12m+1)^2}{4(m^2+1)} \
m &= frac{-1pm sqrt{29}}{14}
end{align}
Only the negative root gives intersections:
$endgroup$
Line $$2mx-2y+4m+1=0 tag{1}$$
First circle $$x^2+y^2=1$$
centre $O=(0,0)$, radius $r_1=1$
distance of $O$ from $(1)$: $$d_1=left| frac{4m+1}{2sqrt{m^2+1}} right|$$
Second circle $$x^2+y^2-8x+11=0$$
centre $P=(4,0)$, radius $r_2=sqrt{4^2-11}=sqrt{5}$
distance of $P$ from $(1)$: $$d_2=left| frac{12m+1}{2sqrt{m^2+1}} right|$$
Equating semi-chord length: $r^2-d^2$
begin{align}
r_1^2-d_1^2 &= r_2^2-d_2^2 \
1-frac{(4m+1)^2}{4(m^2+1)} &=
5-frac{(12m+1)^2}{4(m^2+1)} \
m &= frac{-1pm sqrt{29}}{14}
end{align}
Only the negative root gives intersections:
edited Dec 2 '18 at 7:15
answered Nov 30 '18 at 6:46
Ng Chung TakNg Chung Tak
14.6k31334
14.6k31334
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019642%2fco-ordinate-geometry-circle%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Check case when $2m$ is between $-infty,-1/2,0; 0,7/2; 7/2,infty$
$endgroup$
– lab bhattacharjee
Nov 30 '18 at 5:39