Co-ordinate Geometry : Circle












1












$begingroup$


Problem: Circles $x^2 + y^2 = 1$ and $x^2 + y^2 - 8x + 11 = 0$ cut off equal intercepts on a line through the point $(-2, frac{1}{2})$. Find the slope of the line.



Comments: First I write the family of lines passing through the given point i.e., $y - frac{1}{2} = m (x + 2)$ then by using the pythagorean theorem and the hypothesis I got a equation in $m$ i.e., $| 2m - 7/2| - |2m + 1/2| = 15 sqrt{1 + m^2}$ but the solution of this equation is lengthy.



I am seeking a shorter solution.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Check case when $2m$ is between $-infty,-1/2,0; 0,7/2; 7/2,infty$
    $endgroup$
    – lab bhattacharjee
    Nov 30 '18 at 5:39
















1












$begingroup$


Problem: Circles $x^2 + y^2 = 1$ and $x^2 + y^2 - 8x + 11 = 0$ cut off equal intercepts on a line through the point $(-2, frac{1}{2})$. Find the slope of the line.



Comments: First I write the family of lines passing through the given point i.e., $y - frac{1}{2} = m (x + 2)$ then by using the pythagorean theorem and the hypothesis I got a equation in $m$ i.e., $| 2m - 7/2| - |2m + 1/2| = 15 sqrt{1 + m^2}$ but the solution of this equation is lengthy.



I am seeking a shorter solution.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Check case when $2m$ is between $-infty,-1/2,0; 0,7/2; 7/2,infty$
    $endgroup$
    – lab bhattacharjee
    Nov 30 '18 at 5:39














1












1








1


2



$begingroup$


Problem: Circles $x^2 + y^2 = 1$ and $x^2 + y^2 - 8x + 11 = 0$ cut off equal intercepts on a line through the point $(-2, frac{1}{2})$. Find the slope of the line.



Comments: First I write the family of lines passing through the given point i.e., $y - frac{1}{2} = m (x + 2)$ then by using the pythagorean theorem and the hypothesis I got a equation in $m$ i.e., $| 2m - 7/2| - |2m + 1/2| = 15 sqrt{1 + m^2}$ but the solution of this equation is lengthy.



I am seeking a shorter solution.










share|cite|improve this question









$endgroup$




Problem: Circles $x^2 + y^2 = 1$ and $x^2 + y^2 - 8x + 11 = 0$ cut off equal intercepts on a line through the point $(-2, frac{1}{2})$. Find the slope of the line.



Comments: First I write the family of lines passing through the given point i.e., $y - frac{1}{2} = m (x + 2)$ then by using the pythagorean theorem and the hypothesis I got a equation in $m$ i.e., $| 2m - 7/2| - |2m + 1/2| = 15 sqrt{1 + m^2}$ but the solution of this equation is lengthy.



I am seeking a shorter solution.







analytic-geometry circle






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 30 '18 at 4:35









prashant sharmaprashant sharma

757




757












  • $begingroup$
    Check case when $2m$ is between $-infty,-1/2,0; 0,7/2; 7/2,infty$
    $endgroup$
    – lab bhattacharjee
    Nov 30 '18 at 5:39


















  • $begingroup$
    Check case when $2m$ is between $-infty,-1/2,0; 0,7/2; 7/2,infty$
    $endgroup$
    – lab bhattacharjee
    Nov 30 '18 at 5:39
















$begingroup$
Check case when $2m$ is between $-infty,-1/2,0; 0,7/2; 7/2,infty$
$endgroup$
– lab bhattacharjee
Nov 30 '18 at 5:39




$begingroup$
Check case when $2m$ is between $-infty,-1/2,0; 0,7/2; 7/2,infty$
$endgroup$
– lab bhattacharjee
Nov 30 '18 at 5:39










1 Answer
1






active

oldest

votes


















4












$begingroup$


  • Line $$2mx-2y+4m+1=0 tag{1}$$



  • First circle $$x^2+y^2=1$$



    centre $O=(0,0)$, radius $r_1=1$



    distance of $O$ from $(1)$: $$d_1=left| frac{4m+1}{2sqrt{m^2+1}} right|$$




  • Second circle $$x^2+y^2-8x+11=0$$



    centre $P=(4,0)$, radius $r_2=sqrt{4^2-11}=sqrt{5}$



    distance of $P$ from $(1)$: $$d_2=left| frac{12m+1}{2sqrt{m^2+1}} right|$$




  • Equating semi-chord length: $r^2-d^2$



    begin{align}
    r_1^2-d_1^2 &= r_2^2-d_2^2 \
    1-frac{(4m+1)^2}{4(m^2+1)} &=
    5-frac{(12m+1)^2}{4(m^2+1)} \
    m &= frac{-1pm sqrt{29}}{14}
    end{align}




Only the negative root gives intersections:



enter image description here






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019642%2fco-ordinate-geometry-circle%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$


    • Line $$2mx-2y+4m+1=0 tag{1}$$



    • First circle $$x^2+y^2=1$$



      centre $O=(0,0)$, radius $r_1=1$



      distance of $O$ from $(1)$: $$d_1=left| frac{4m+1}{2sqrt{m^2+1}} right|$$




    • Second circle $$x^2+y^2-8x+11=0$$



      centre $P=(4,0)$, radius $r_2=sqrt{4^2-11}=sqrt{5}$



      distance of $P$ from $(1)$: $$d_2=left| frac{12m+1}{2sqrt{m^2+1}} right|$$




    • Equating semi-chord length: $r^2-d^2$



      begin{align}
      r_1^2-d_1^2 &= r_2^2-d_2^2 \
      1-frac{(4m+1)^2}{4(m^2+1)} &=
      5-frac{(12m+1)^2}{4(m^2+1)} \
      m &= frac{-1pm sqrt{29}}{14}
      end{align}




    Only the negative root gives intersections:



    enter image description here






    share|cite|improve this answer











    $endgroup$


















      4












      $begingroup$


      • Line $$2mx-2y+4m+1=0 tag{1}$$



      • First circle $$x^2+y^2=1$$



        centre $O=(0,0)$, radius $r_1=1$



        distance of $O$ from $(1)$: $$d_1=left| frac{4m+1}{2sqrt{m^2+1}} right|$$




      • Second circle $$x^2+y^2-8x+11=0$$



        centre $P=(4,0)$, radius $r_2=sqrt{4^2-11}=sqrt{5}$



        distance of $P$ from $(1)$: $$d_2=left| frac{12m+1}{2sqrt{m^2+1}} right|$$




      • Equating semi-chord length: $r^2-d^2$



        begin{align}
        r_1^2-d_1^2 &= r_2^2-d_2^2 \
        1-frac{(4m+1)^2}{4(m^2+1)} &=
        5-frac{(12m+1)^2}{4(m^2+1)} \
        m &= frac{-1pm sqrt{29}}{14}
        end{align}




      Only the negative root gives intersections:



      enter image description here






      share|cite|improve this answer











      $endgroup$
















        4












        4








        4





        $begingroup$


        • Line $$2mx-2y+4m+1=0 tag{1}$$



        • First circle $$x^2+y^2=1$$



          centre $O=(0,0)$, radius $r_1=1$



          distance of $O$ from $(1)$: $$d_1=left| frac{4m+1}{2sqrt{m^2+1}} right|$$




        • Second circle $$x^2+y^2-8x+11=0$$



          centre $P=(4,0)$, radius $r_2=sqrt{4^2-11}=sqrt{5}$



          distance of $P$ from $(1)$: $$d_2=left| frac{12m+1}{2sqrt{m^2+1}} right|$$




        • Equating semi-chord length: $r^2-d^2$



          begin{align}
          r_1^2-d_1^2 &= r_2^2-d_2^2 \
          1-frac{(4m+1)^2}{4(m^2+1)} &=
          5-frac{(12m+1)^2}{4(m^2+1)} \
          m &= frac{-1pm sqrt{29}}{14}
          end{align}




        Only the negative root gives intersections:



        enter image description here






        share|cite|improve this answer











        $endgroup$




        • Line $$2mx-2y+4m+1=0 tag{1}$$



        • First circle $$x^2+y^2=1$$



          centre $O=(0,0)$, radius $r_1=1$



          distance of $O$ from $(1)$: $$d_1=left| frac{4m+1}{2sqrt{m^2+1}} right|$$




        • Second circle $$x^2+y^2-8x+11=0$$



          centre $P=(4,0)$, radius $r_2=sqrt{4^2-11}=sqrt{5}$



          distance of $P$ from $(1)$: $$d_2=left| frac{12m+1}{2sqrt{m^2+1}} right|$$




        • Equating semi-chord length: $r^2-d^2$



          begin{align}
          r_1^2-d_1^2 &= r_2^2-d_2^2 \
          1-frac{(4m+1)^2}{4(m^2+1)} &=
          5-frac{(12m+1)^2}{4(m^2+1)} \
          m &= frac{-1pm sqrt{29}}{14}
          end{align}




        Only the negative root gives intersections:



        enter image description here







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 2 '18 at 7:15

























        answered Nov 30 '18 at 6:46









        Ng Chung TakNg Chung Tak

        14.6k31334




        14.6k31334






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019642%2fco-ordinate-geometry-circle%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How to change which sound is reproduced for terminal bell?

            Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

            Can I use Tabulator js library in my java Spring + Thymeleaf project?