Equivalence of convex function












0












$begingroup$


Let $I subseteq mathbb{R}$ be an interval. Then a function $f:I rightarrow mathbb{R}$ is convex on the interval $I subseteq mathbb{R}$ when:



$$forall a,b in I, a < x < b Rightarrow f(x) le f(a) + dfrac{f(b)-f(a)}{b-a}.(x-a)$$



Also I know that a function $f:I rightarrow mathbb{R}$ is convex on the interval $I subseteq mathbb{R}$ iff given $a,b in I, a < b$, the following happens:



$$f(t.a + (1-t).b) le t.f(a) + (1-t).f(b) forall t in [0,1]$$



There is another equivalence: A function $f$ is convex on the interval $I subseteq mathbb{R}$ iff given $a_1,a_2,...,a_n in I$ and $t_1,t_2,...,t_n in [0,1]$ that $sum t_i = 1$ we have:



$$f(sum t_i a_i) le sum t_i f(a_i)$$



How to prove this last equivalence?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Induction. ${}{}$
    $endgroup$
    – T. Bongers
    Dec 4 '18 at 3:09










  • $begingroup$
    @T.Bongers Can you give further hints? I still don't know how to prove it.
    $endgroup$
    – Enzo Nakamura
    Dec 4 '18 at 18:00
















0












$begingroup$


Let $I subseteq mathbb{R}$ be an interval. Then a function $f:I rightarrow mathbb{R}$ is convex on the interval $I subseteq mathbb{R}$ when:



$$forall a,b in I, a < x < b Rightarrow f(x) le f(a) + dfrac{f(b)-f(a)}{b-a}.(x-a)$$



Also I know that a function $f:I rightarrow mathbb{R}$ is convex on the interval $I subseteq mathbb{R}$ iff given $a,b in I, a < b$, the following happens:



$$f(t.a + (1-t).b) le t.f(a) + (1-t).f(b) forall t in [0,1]$$



There is another equivalence: A function $f$ is convex on the interval $I subseteq mathbb{R}$ iff given $a_1,a_2,...,a_n in I$ and $t_1,t_2,...,t_n in [0,1]$ that $sum t_i = 1$ we have:



$$f(sum t_i a_i) le sum t_i f(a_i)$$



How to prove this last equivalence?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Induction. ${}{}$
    $endgroup$
    – T. Bongers
    Dec 4 '18 at 3:09










  • $begingroup$
    @T.Bongers Can you give further hints? I still don't know how to prove it.
    $endgroup$
    – Enzo Nakamura
    Dec 4 '18 at 18:00














0












0








0





$begingroup$


Let $I subseteq mathbb{R}$ be an interval. Then a function $f:I rightarrow mathbb{R}$ is convex on the interval $I subseteq mathbb{R}$ when:



$$forall a,b in I, a < x < b Rightarrow f(x) le f(a) + dfrac{f(b)-f(a)}{b-a}.(x-a)$$



Also I know that a function $f:I rightarrow mathbb{R}$ is convex on the interval $I subseteq mathbb{R}$ iff given $a,b in I, a < b$, the following happens:



$$f(t.a + (1-t).b) le t.f(a) + (1-t).f(b) forall t in [0,1]$$



There is another equivalence: A function $f$ is convex on the interval $I subseteq mathbb{R}$ iff given $a_1,a_2,...,a_n in I$ and $t_1,t_2,...,t_n in [0,1]$ that $sum t_i = 1$ we have:



$$f(sum t_i a_i) le sum t_i f(a_i)$$



How to prove this last equivalence?










share|cite|improve this question











$endgroup$




Let $I subseteq mathbb{R}$ be an interval. Then a function $f:I rightarrow mathbb{R}$ is convex on the interval $I subseteq mathbb{R}$ when:



$$forall a,b in I, a < x < b Rightarrow f(x) le f(a) + dfrac{f(b)-f(a)}{b-a}.(x-a)$$



Also I know that a function $f:I rightarrow mathbb{R}$ is convex on the interval $I subseteq mathbb{R}$ iff given $a,b in I, a < b$, the following happens:



$$f(t.a + (1-t).b) le t.f(a) + (1-t).f(b) forall t in [0,1]$$



There is another equivalence: A function $f$ is convex on the interval $I subseteq mathbb{R}$ iff given $a_1,a_2,...,a_n in I$ and $t_1,t_2,...,t_n in [0,1]$ that $sum t_i = 1$ we have:



$$f(sum t_i a_i) le sum t_i f(a_i)$$



How to prove this last equivalence?







real-analysis functions convex-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 4 '18 at 5:27









GNUSupporter 8964民主女神 地下教會

13.5k72550




13.5k72550










asked Dec 4 '18 at 3:09









Enzo NakamuraEnzo Nakamura

685




685








  • 1




    $begingroup$
    Induction. ${}{}$
    $endgroup$
    – T. Bongers
    Dec 4 '18 at 3:09










  • $begingroup$
    @T.Bongers Can you give further hints? I still don't know how to prove it.
    $endgroup$
    – Enzo Nakamura
    Dec 4 '18 at 18:00














  • 1




    $begingroup$
    Induction. ${}{}$
    $endgroup$
    – T. Bongers
    Dec 4 '18 at 3:09










  • $begingroup$
    @T.Bongers Can you give further hints? I still don't know how to prove it.
    $endgroup$
    – Enzo Nakamura
    Dec 4 '18 at 18:00








1




1




$begingroup$
Induction. ${}{}$
$endgroup$
– T. Bongers
Dec 4 '18 at 3:09




$begingroup$
Induction. ${}{}$
$endgroup$
– T. Bongers
Dec 4 '18 at 3:09












$begingroup$
@T.Bongers Can you give further hints? I still don't know how to prove it.
$endgroup$
– Enzo Nakamura
Dec 4 '18 at 18:00




$begingroup$
@T.Bongers Can you give further hints? I still don't know how to prove it.
$endgroup$
– Enzo Nakamura
Dec 4 '18 at 18:00










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025080%2fequivalence-of-convex-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025080%2fequivalence-of-convex-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to change which sound is reproduced for terminal bell?

Can I use Tabulator js library in my java Spring + Thymeleaf project?

Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents