Equivalence of convex function
$begingroup$
Let $I subseteq mathbb{R}$ be an interval. Then a function $f:I rightarrow mathbb{R}$ is convex on the interval $I subseteq mathbb{R}$ when:
$$forall a,b in I, a < x < b Rightarrow f(x) le f(a) + dfrac{f(b)-f(a)}{b-a}.(x-a)$$
Also I know that a function $f:I rightarrow mathbb{R}$ is convex on the interval $I subseteq mathbb{R}$ iff given $a,b in I, a < b$, the following happens:
$$f(t.a + (1-t).b) le t.f(a) + (1-t).f(b) forall t in [0,1]$$
There is another equivalence: A function $f$ is convex on the interval $I subseteq mathbb{R}$ iff given $a_1,a_2,...,a_n in I$ and $t_1,t_2,...,t_n in [0,1]$ that $sum t_i = 1$ we have:
$$f(sum t_i a_i) le sum t_i f(a_i)$$
How to prove this last equivalence?
real-analysis functions convex-analysis
$endgroup$
add a comment |
$begingroup$
Let $I subseteq mathbb{R}$ be an interval. Then a function $f:I rightarrow mathbb{R}$ is convex on the interval $I subseteq mathbb{R}$ when:
$$forall a,b in I, a < x < b Rightarrow f(x) le f(a) + dfrac{f(b)-f(a)}{b-a}.(x-a)$$
Also I know that a function $f:I rightarrow mathbb{R}$ is convex on the interval $I subseteq mathbb{R}$ iff given $a,b in I, a < b$, the following happens:
$$f(t.a + (1-t).b) le t.f(a) + (1-t).f(b) forall t in [0,1]$$
There is another equivalence: A function $f$ is convex on the interval $I subseteq mathbb{R}$ iff given $a_1,a_2,...,a_n in I$ and $t_1,t_2,...,t_n in [0,1]$ that $sum t_i = 1$ we have:
$$f(sum t_i a_i) le sum t_i f(a_i)$$
How to prove this last equivalence?
real-analysis functions convex-analysis
$endgroup$
1
$begingroup$
Induction. ${}{}$
$endgroup$
– T. Bongers
Dec 4 '18 at 3:09
$begingroup$
@T.Bongers Can you give further hints? I still don't know how to prove it.
$endgroup$
– Enzo Nakamura
Dec 4 '18 at 18:00
add a comment |
$begingroup$
Let $I subseteq mathbb{R}$ be an interval. Then a function $f:I rightarrow mathbb{R}$ is convex on the interval $I subseteq mathbb{R}$ when:
$$forall a,b in I, a < x < b Rightarrow f(x) le f(a) + dfrac{f(b)-f(a)}{b-a}.(x-a)$$
Also I know that a function $f:I rightarrow mathbb{R}$ is convex on the interval $I subseteq mathbb{R}$ iff given $a,b in I, a < b$, the following happens:
$$f(t.a + (1-t).b) le t.f(a) + (1-t).f(b) forall t in [0,1]$$
There is another equivalence: A function $f$ is convex on the interval $I subseteq mathbb{R}$ iff given $a_1,a_2,...,a_n in I$ and $t_1,t_2,...,t_n in [0,1]$ that $sum t_i = 1$ we have:
$$f(sum t_i a_i) le sum t_i f(a_i)$$
How to prove this last equivalence?
real-analysis functions convex-analysis
$endgroup$
Let $I subseteq mathbb{R}$ be an interval. Then a function $f:I rightarrow mathbb{R}$ is convex on the interval $I subseteq mathbb{R}$ when:
$$forall a,b in I, a < x < b Rightarrow f(x) le f(a) + dfrac{f(b)-f(a)}{b-a}.(x-a)$$
Also I know that a function $f:I rightarrow mathbb{R}$ is convex on the interval $I subseteq mathbb{R}$ iff given $a,b in I, a < b$, the following happens:
$$f(t.a + (1-t).b) le t.f(a) + (1-t).f(b) forall t in [0,1]$$
There is another equivalence: A function $f$ is convex on the interval $I subseteq mathbb{R}$ iff given $a_1,a_2,...,a_n in I$ and $t_1,t_2,...,t_n in [0,1]$ that $sum t_i = 1$ we have:
$$f(sum t_i a_i) le sum t_i f(a_i)$$
How to prove this last equivalence?
real-analysis functions convex-analysis
real-analysis functions convex-analysis
edited Dec 4 '18 at 5:27
GNUSupporter 8964民主女神 地下教會
13.5k72550
13.5k72550
asked Dec 4 '18 at 3:09
Enzo NakamuraEnzo Nakamura
685
685
1
$begingroup$
Induction. ${}{}$
$endgroup$
– T. Bongers
Dec 4 '18 at 3:09
$begingroup$
@T.Bongers Can you give further hints? I still don't know how to prove it.
$endgroup$
– Enzo Nakamura
Dec 4 '18 at 18:00
add a comment |
1
$begingroup$
Induction. ${}{}$
$endgroup$
– T. Bongers
Dec 4 '18 at 3:09
$begingroup$
@T.Bongers Can you give further hints? I still don't know how to prove it.
$endgroup$
– Enzo Nakamura
Dec 4 '18 at 18:00
1
1
$begingroup$
Induction. ${}{}$
$endgroup$
– T. Bongers
Dec 4 '18 at 3:09
$begingroup$
Induction. ${}{}$
$endgroup$
– T. Bongers
Dec 4 '18 at 3:09
$begingroup$
@T.Bongers Can you give further hints? I still don't know how to prove it.
$endgroup$
– Enzo Nakamura
Dec 4 '18 at 18:00
$begingroup$
@T.Bongers Can you give further hints? I still don't know how to prove it.
$endgroup$
– Enzo Nakamura
Dec 4 '18 at 18:00
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025080%2fequivalence-of-convex-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025080%2fequivalence-of-convex-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Induction. ${}{}$
$endgroup$
– T. Bongers
Dec 4 '18 at 3:09
$begingroup$
@T.Bongers Can you give further hints? I still don't know how to prove it.
$endgroup$
– Enzo Nakamura
Dec 4 '18 at 18:00