Calculate residual amount in dataframe column
I have a "capacity" dataframe:
scala> sql("create table capacity (id String, capacity Int)");
scala> sql("insert into capacity values ('A', 50), ('B', 100)");
scala> sql("select * from capacity").show(false)
+---+--------+
|id |capacity|
+---+--------+
|A |50 |
|B |100 |
+---+--------+
I have another "used" dataframe with following information:
scala> sql ("create table used (id String, capacityId String, used Int)");
scala> sql ("insert into used values ('item1', 'A', 10), ('item2', 'A', 20), ('item3', 'A', 10), ('item4', 'B', 30), ('item5', 'B', 40), ('item6', 'B', 40)")
scala> sql("select * from used order by capacityId").show(false)
+-----+----------+----+
|id |capacityId|used|
+-----+----------+----+
|item1|A |10 |
|item3|A |10 |
|item2|A |20 |
|item6|B |40 |
|item4|B |30 |
|item5|B |40 |
+-----+----------+----+
Column "capacityId" of the "used" dataframe is foreign key to column "id" of the "capacity" dataframe.
I want to calculate the "capacityLeft" column which is residual amount at that point of time.
+-----+----------+----+--------------+
|id |capacityId|used| capacityLeft |
+-----+----------+----+--------------+
|item1|A |10 |40 | <- 50(capacity of 'A')-10
|item3|A |10 |30 | <- 40-10
|item2|A |20 |10 | <- 30-20
|item6|B |40 |60 | <- 100(capacity of 'B')-40
|item4|B |30 |30 | <- 60-30
|item5|B |40 |-10 | <- 30-40
+-----+----------+----+--------------+
In real senario, the "createdDate" column is used for ordering of "used" dataframe column.
Spark version: 2.2
scala apache-spark dataframe apache-spark-sql hiveql
add a comment |
I have a "capacity" dataframe:
scala> sql("create table capacity (id String, capacity Int)");
scala> sql("insert into capacity values ('A', 50), ('B', 100)");
scala> sql("select * from capacity").show(false)
+---+--------+
|id |capacity|
+---+--------+
|A |50 |
|B |100 |
+---+--------+
I have another "used" dataframe with following information:
scala> sql ("create table used (id String, capacityId String, used Int)");
scala> sql ("insert into used values ('item1', 'A', 10), ('item2', 'A', 20), ('item3', 'A', 10), ('item4', 'B', 30), ('item5', 'B', 40), ('item6', 'B', 40)")
scala> sql("select * from used order by capacityId").show(false)
+-----+----------+----+
|id |capacityId|used|
+-----+----------+----+
|item1|A |10 |
|item3|A |10 |
|item2|A |20 |
|item6|B |40 |
|item4|B |30 |
|item5|B |40 |
+-----+----------+----+
Column "capacityId" of the "used" dataframe is foreign key to column "id" of the "capacity" dataframe.
I want to calculate the "capacityLeft" column which is residual amount at that point of time.
+-----+----------+----+--------------+
|id |capacityId|used| capacityLeft |
+-----+----------+----+--------------+
|item1|A |10 |40 | <- 50(capacity of 'A')-10
|item3|A |10 |30 | <- 40-10
|item2|A |20 |10 | <- 30-20
|item6|B |40 |60 | <- 100(capacity of 'B')-40
|item4|B |30 |30 | <- 60-30
|item5|B |40 |-10 | <- 30-40
+-----+----------+----+--------------+
In real senario, the "createdDate" column is used for ordering of "used" dataframe column.
Spark version: 2.2
scala apache-spark dataframe apache-spark-sql hiveql
add a comment |
I have a "capacity" dataframe:
scala> sql("create table capacity (id String, capacity Int)");
scala> sql("insert into capacity values ('A', 50), ('B', 100)");
scala> sql("select * from capacity").show(false)
+---+--------+
|id |capacity|
+---+--------+
|A |50 |
|B |100 |
+---+--------+
I have another "used" dataframe with following information:
scala> sql ("create table used (id String, capacityId String, used Int)");
scala> sql ("insert into used values ('item1', 'A', 10), ('item2', 'A', 20), ('item3', 'A', 10), ('item4', 'B', 30), ('item5', 'B', 40), ('item6', 'B', 40)")
scala> sql("select * from used order by capacityId").show(false)
+-----+----------+----+
|id |capacityId|used|
+-----+----------+----+
|item1|A |10 |
|item3|A |10 |
|item2|A |20 |
|item6|B |40 |
|item4|B |30 |
|item5|B |40 |
+-----+----------+----+
Column "capacityId" of the "used" dataframe is foreign key to column "id" of the "capacity" dataframe.
I want to calculate the "capacityLeft" column which is residual amount at that point of time.
+-----+----------+----+--------------+
|id |capacityId|used| capacityLeft |
+-----+----------+----+--------------+
|item1|A |10 |40 | <- 50(capacity of 'A')-10
|item3|A |10 |30 | <- 40-10
|item2|A |20 |10 | <- 30-20
|item6|B |40 |60 | <- 100(capacity of 'B')-40
|item4|B |30 |30 | <- 60-30
|item5|B |40 |-10 | <- 30-40
+-----+----------+----+--------------+
In real senario, the "createdDate" column is used for ordering of "used" dataframe column.
Spark version: 2.2
scala apache-spark dataframe apache-spark-sql hiveql
I have a "capacity" dataframe:
scala> sql("create table capacity (id String, capacity Int)");
scala> sql("insert into capacity values ('A', 50), ('B', 100)");
scala> sql("select * from capacity").show(false)
+---+--------+
|id |capacity|
+---+--------+
|A |50 |
|B |100 |
+---+--------+
I have another "used" dataframe with following information:
scala> sql ("create table used (id String, capacityId String, used Int)");
scala> sql ("insert into used values ('item1', 'A', 10), ('item2', 'A', 20), ('item3', 'A', 10), ('item4', 'B', 30), ('item5', 'B', 40), ('item6', 'B', 40)")
scala> sql("select * from used order by capacityId").show(false)
+-----+----------+----+
|id |capacityId|used|
+-----+----------+----+
|item1|A |10 |
|item3|A |10 |
|item2|A |20 |
|item6|B |40 |
|item4|B |30 |
|item5|B |40 |
+-----+----------+----+
Column "capacityId" of the "used" dataframe is foreign key to column "id" of the "capacity" dataframe.
I want to calculate the "capacityLeft" column which is residual amount at that point of time.
+-----+----------+----+--------------+
|id |capacityId|used| capacityLeft |
+-----+----------+----+--------------+
|item1|A |10 |40 | <- 50(capacity of 'A')-10
|item3|A |10 |30 | <- 40-10
|item2|A |20 |10 | <- 30-20
|item6|B |40 |60 | <- 100(capacity of 'B')-40
|item4|B |30 |30 | <- 60-30
|item5|B |40 |-10 | <- 30-40
+-----+----------+----+--------------+
In real senario, the "createdDate" column is used for ordering of "used" dataframe column.
Spark version: 2.2
scala apache-spark dataframe apache-spark-sql hiveql
scala apache-spark dataframe apache-spark-sql hiveql
edited Nov 20 '18 at 9:30
Shaido
12.4k112541
12.4k112541
asked Nov 20 '18 at 8:44
user811602user811602
5141828
5141828
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
This can be solved by using window functions in Spark. Note that for this to work there need to exist a column that keep track of the row order for each capacityId
.
Start by joining the two dataframes together:
val df = used.join(capacity.withColumnRenamed("id", "capacityId"), Seq("capacityId"), "inner")
Here the id in the capacity
dataframe is renamed to match the id name in the used
dataframe as to not keep a duplicate columns.
Now create a window and calculate the cumsum of the used column. Take the value of the capacity
and subtract the cumsum to get the remaining amount:
val w = Window.partitionBy("capacityId").orderBy("createdDate")
val df2 = df.withColumn("capacityLeft", $"capacity" - sum($"used").over(w))
Resulting dataframe with example createdDate
column:
+----------+-----+----+-----------+--------+------------+
|capacityId| id|used|createdDate|capacity|capacityLeft|
+----------+-----+----+-----------+--------+------------+
| B|item6| 40| 1| 100| 60|
| B|item4| 30| 2| 100| 30|
| B|item5| 40| 3| 100| -10|
| A|item1| 10| 1| 50| 40|
| A|item3| 10| 2| 50| 30|
| A|item2| 20| 3| 50| 10|
+----------+-----+----+-----------+--------+------------+
Any unwanted columns can now be removed with drop
.
1
Thanks. It is giving me desired output.
– user811602
Nov 20 '18 at 9:48
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53389165%2fcalculate-residual-amount-in-dataframe-column%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
This can be solved by using window functions in Spark. Note that for this to work there need to exist a column that keep track of the row order for each capacityId
.
Start by joining the two dataframes together:
val df = used.join(capacity.withColumnRenamed("id", "capacityId"), Seq("capacityId"), "inner")
Here the id in the capacity
dataframe is renamed to match the id name in the used
dataframe as to not keep a duplicate columns.
Now create a window and calculate the cumsum of the used column. Take the value of the capacity
and subtract the cumsum to get the remaining amount:
val w = Window.partitionBy("capacityId").orderBy("createdDate")
val df2 = df.withColumn("capacityLeft", $"capacity" - sum($"used").over(w))
Resulting dataframe with example createdDate
column:
+----------+-----+----+-----------+--------+------------+
|capacityId| id|used|createdDate|capacity|capacityLeft|
+----------+-----+----+-----------+--------+------------+
| B|item6| 40| 1| 100| 60|
| B|item4| 30| 2| 100| 30|
| B|item5| 40| 3| 100| -10|
| A|item1| 10| 1| 50| 40|
| A|item3| 10| 2| 50| 30|
| A|item2| 20| 3| 50| 10|
+----------+-----+----+-----------+--------+------------+
Any unwanted columns can now be removed with drop
.
1
Thanks. It is giving me desired output.
– user811602
Nov 20 '18 at 9:48
add a comment |
This can be solved by using window functions in Spark. Note that for this to work there need to exist a column that keep track of the row order for each capacityId
.
Start by joining the two dataframes together:
val df = used.join(capacity.withColumnRenamed("id", "capacityId"), Seq("capacityId"), "inner")
Here the id in the capacity
dataframe is renamed to match the id name in the used
dataframe as to not keep a duplicate columns.
Now create a window and calculate the cumsum of the used column. Take the value of the capacity
and subtract the cumsum to get the remaining amount:
val w = Window.partitionBy("capacityId").orderBy("createdDate")
val df2 = df.withColumn("capacityLeft", $"capacity" - sum($"used").over(w))
Resulting dataframe with example createdDate
column:
+----------+-----+----+-----------+--------+------------+
|capacityId| id|used|createdDate|capacity|capacityLeft|
+----------+-----+----+-----------+--------+------------+
| B|item6| 40| 1| 100| 60|
| B|item4| 30| 2| 100| 30|
| B|item5| 40| 3| 100| -10|
| A|item1| 10| 1| 50| 40|
| A|item3| 10| 2| 50| 30|
| A|item2| 20| 3| 50| 10|
+----------+-----+----+-----------+--------+------------+
Any unwanted columns can now be removed with drop
.
1
Thanks. It is giving me desired output.
– user811602
Nov 20 '18 at 9:48
add a comment |
This can be solved by using window functions in Spark. Note that for this to work there need to exist a column that keep track of the row order for each capacityId
.
Start by joining the two dataframes together:
val df = used.join(capacity.withColumnRenamed("id", "capacityId"), Seq("capacityId"), "inner")
Here the id in the capacity
dataframe is renamed to match the id name in the used
dataframe as to not keep a duplicate columns.
Now create a window and calculate the cumsum of the used column. Take the value of the capacity
and subtract the cumsum to get the remaining amount:
val w = Window.partitionBy("capacityId").orderBy("createdDate")
val df2 = df.withColumn("capacityLeft", $"capacity" - sum($"used").over(w))
Resulting dataframe with example createdDate
column:
+----------+-----+----+-----------+--------+------------+
|capacityId| id|used|createdDate|capacity|capacityLeft|
+----------+-----+----+-----------+--------+------------+
| B|item6| 40| 1| 100| 60|
| B|item4| 30| 2| 100| 30|
| B|item5| 40| 3| 100| -10|
| A|item1| 10| 1| 50| 40|
| A|item3| 10| 2| 50| 30|
| A|item2| 20| 3| 50| 10|
+----------+-----+----+-----------+--------+------------+
Any unwanted columns can now be removed with drop
.
This can be solved by using window functions in Spark. Note that for this to work there need to exist a column that keep track of the row order for each capacityId
.
Start by joining the two dataframes together:
val df = used.join(capacity.withColumnRenamed("id", "capacityId"), Seq("capacityId"), "inner")
Here the id in the capacity
dataframe is renamed to match the id name in the used
dataframe as to not keep a duplicate columns.
Now create a window and calculate the cumsum of the used column. Take the value of the capacity
and subtract the cumsum to get the remaining amount:
val w = Window.partitionBy("capacityId").orderBy("createdDate")
val df2 = df.withColumn("capacityLeft", $"capacity" - sum($"used").over(w))
Resulting dataframe with example createdDate
column:
+----------+-----+----+-----------+--------+------------+
|capacityId| id|used|createdDate|capacity|capacityLeft|
+----------+-----+----+-----------+--------+------------+
| B|item6| 40| 1| 100| 60|
| B|item4| 30| 2| 100| 30|
| B|item5| 40| 3| 100| -10|
| A|item1| 10| 1| 50| 40|
| A|item3| 10| 2| 50| 30|
| A|item2| 20| 3| 50| 10|
+----------+-----+----+-----------+--------+------------+
Any unwanted columns can now be removed with drop
.
answered Nov 20 '18 at 9:29
ShaidoShaido
12.4k112541
12.4k112541
1
Thanks. It is giving me desired output.
– user811602
Nov 20 '18 at 9:48
add a comment |
1
Thanks. It is giving me desired output.
– user811602
Nov 20 '18 at 9:48
1
1
Thanks. It is giving me desired output.
– user811602
Nov 20 '18 at 9:48
Thanks. It is giving me desired output.
– user811602
Nov 20 '18 at 9:48
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53389165%2fcalculate-residual-amount-in-dataframe-column%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown