What is $maxlimits_{sum_{i=k}^{n}x_ileqsum_{i=k}^{n}y_i \forall k=1,2,cdots,n} prod_{i=1}^{n} x_i$
up vote
2
down vote
favorite
begin{array}{ll} text{maximize} & prod_{i=1}^{n}x_i\ text{subject to} & mathrm sum_{i=k}^{n}x_ileqsum_{i=k}^{n}y_i \forall k=1,2,cdots,nend{array}
if $x_1geqcdotsgeq x_n$ and $y_1geqcdotsgeq y_nquad$ ($x_i,y_iin mathbb{R}^+$ and all $y_i$ are given).
My attempt: By induction
For $n=2$, we need to maximize $x_1x_2$ when $x_1+x_2leq y_1+y_2$ and $x_2leq y_2$. Let $x_2=y_2-tquad$ ($tgeq0$), then $x_1leq y_1+t$, thus to maximize $x_1x_2$, we let $x_1=y_1+t$. Then $x_1x_2=(y_2-t)(y_1+t)=y_1y_2-(y_1-y_2)t-t^2leq y_1y_2$. Thus $max x_1x_2=y_1y_2$ when $t=0$.
Suppose $maxlimits_{{sum_{i=k}^{n}x_ileqsum_{i=k}^{n}y_i \forall k=1,2,cdots,n}} prod_{i=1}^{n}x_i=prod_{i=1}^{n}y_i$, then begin{array}{ll}maxlimits_{{sum_{i=k}^{n+1}x_ileqsum_{i=k}^{n+1}y_i \forall k=1,2,cdots,n+1}} prod_{i=1}^{n+1}x_i=(prod_{i=1}^{n}y_i)x_{n+1}leq(prod_{i=1}^{n}y_i)y_{n+1}.end{array}
I think I cannot use induction like that because of constraints, any other method to try to prove my hypothesis that maximum is achieved when $x_i=y_i$?
optimization
add a comment |
up vote
2
down vote
favorite
begin{array}{ll} text{maximize} & prod_{i=1}^{n}x_i\ text{subject to} & mathrm sum_{i=k}^{n}x_ileqsum_{i=k}^{n}y_i \forall k=1,2,cdots,nend{array}
if $x_1geqcdotsgeq x_n$ and $y_1geqcdotsgeq y_nquad$ ($x_i,y_iin mathbb{R}^+$ and all $y_i$ are given).
My attempt: By induction
For $n=2$, we need to maximize $x_1x_2$ when $x_1+x_2leq y_1+y_2$ and $x_2leq y_2$. Let $x_2=y_2-tquad$ ($tgeq0$), then $x_1leq y_1+t$, thus to maximize $x_1x_2$, we let $x_1=y_1+t$. Then $x_1x_2=(y_2-t)(y_1+t)=y_1y_2-(y_1-y_2)t-t^2leq y_1y_2$. Thus $max x_1x_2=y_1y_2$ when $t=0$.
Suppose $maxlimits_{{sum_{i=k}^{n}x_ileqsum_{i=k}^{n}y_i \forall k=1,2,cdots,n}} prod_{i=1}^{n}x_i=prod_{i=1}^{n}y_i$, then begin{array}{ll}maxlimits_{{sum_{i=k}^{n+1}x_ileqsum_{i=k}^{n+1}y_i \forall k=1,2,cdots,n+1}} prod_{i=1}^{n+1}x_i=(prod_{i=1}^{n}y_i)x_{n+1}leq(prod_{i=1}^{n}y_i)y_{n+1}.end{array}
I think I cannot use induction like that because of constraints, any other method to try to prove my hypothesis that maximum is achieved when $x_i=y_i$?
optimization
I cannot just let $k=1$, because inequality in the constraint should hold for all $k$, i.e. $x_1+cdots+x_nleq y_1+cdots+y_n$ when $k=1$ till $x_nleq y_n$ when $k=n$
– Lee
Nov 19 at 8:13
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
begin{array}{ll} text{maximize} & prod_{i=1}^{n}x_i\ text{subject to} & mathrm sum_{i=k}^{n}x_ileqsum_{i=k}^{n}y_i \forall k=1,2,cdots,nend{array}
if $x_1geqcdotsgeq x_n$ and $y_1geqcdotsgeq y_nquad$ ($x_i,y_iin mathbb{R}^+$ and all $y_i$ are given).
My attempt: By induction
For $n=2$, we need to maximize $x_1x_2$ when $x_1+x_2leq y_1+y_2$ and $x_2leq y_2$. Let $x_2=y_2-tquad$ ($tgeq0$), then $x_1leq y_1+t$, thus to maximize $x_1x_2$, we let $x_1=y_1+t$. Then $x_1x_2=(y_2-t)(y_1+t)=y_1y_2-(y_1-y_2)t-t^2leq y_1y_2$. Thus $max x_1x_2=y_1y_2$ when $t=0$.
Suppose $maxlimits_{{sum_{i=k}^{n}x_ileqsum_{i=k}^{n}y_i \forall k=1,2,cdots,n}} prod_{i=1}^{n}x_i=prod_{i=1}^{n}y_i$, then begin{array}{ll}maxlimits_{{sum_{i=k}^{n+1}x_ileqsum_{i=k}^{n+1}y_i \forall k=1,2,cdots,n+1}} prod_{i=1}^{n+1}x_i=(prod_{i=1}^{n}y_i)x_{n+1}leq(prod_{i=1}^{n}y_i)y_{n+1}.end{array}
I think I cannot use induction like that because of constraints, any other method to try to prove my hypothesis that maximum is achieved when $x_i=y_i$?
optimization
begin{array}{ll} text{maximize} & prod_{i=1}^{n}x_i\ text{subject to} & mathrm sum_{i=k}^{n}x_ileqsum_{i=k}^{n}y_i \forall k=1,2,cdots,nend{array}
if $x_1geqcdotsgeq x_n$ and $y_1geqcdotsgeq y_nquad$ ($x_i,y_iin mathbb{R}^+$ and all $y_i$ are given).
My attempt: By induction
For $n=2$, we need to maximize $x_1x_2$ when $x_1+x_2leq y_1+y_2$ and $x_2leq y_2$. Let $x_2=y_2-tquad$ ($tgeq0$), then $x_1leq y_1+t$, thus to maximize $x_1x_2$, we let $x_1=y_1+t$. Then $x_1x_2=(y_2-t)(y_1+t)=y_1y_2-(y_1-y_2)t-t^2leq y_1y_2$. Thus $max x_1x_2=y_1y_2$ when $t=0$.
Suppose $maxlimits_{{sum_{i=k}^{n}x_ileqsum_{i=k}^{n}y_i \forall k=1,2,cdots,n}} prod_{i=1}^{n}x_i=prod_{i=1}^{n}y_i$, then begin{array}{ll}maxlimits_{{sum_{i=k}^{n+1}x_ileqsum_{i=k}^{n+1}y_i \forall k=1,2,cdots,n+1}} prod_{i=1}^{n+1}x_i=(prod_{i=1}^{n}y_i)x_{n+1}leq(prod_{i=1}^{n}y_i)y_{n+1}.end{array}
I think I cannot use induction like that because of constraints, any other method to try to prove my hypothesis that maximum is achieved when $x_i=y_i$?
optimization
optimization
asked Nov 19 at 7:52
Lee
907
907
I cannot just let $k=1$, because inequality in the constraint should hold for all $k$, i.e. $x_1+cdots+x_nleq y_1+cdots+y_n$ when $k=1$ till $x_nleq y_n$ when $k=n$
– Lee
Nov 19 at 8:13
add a comment |
I cannot just let $k=1$, because inequality in the constraint should hold for all $k$, i.e. $x_1+cdots+x_nleq y_1+cdots+y_n$ when $k=1$ till $x_nleq y_n$ when $k=n$
– Lee
Nov 19 at 8:13
I cannot just let $k=1$, because inequality in the constraint should hold for all $k$, i.e. $x_1+cdots+x_nleq y_1+cdots+y_n$ when $k=1$ till $x_nleq y_n$ when $k=n$
– Lee
Nov 19 at 8:13
I cannot just let $k=1$, because inequality in the constraint should hold for all $k$, i.e. $x_1+cdots+x_nleq y_1+cdots+y_n$ when $k=1$ till $x_nleq y_n$ when $k=n$
– Lee
Nov 19 at 8:13
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004633%2fwhat-is-max-limits-sum-i-knx-i-leq-sum-i-kny-i-forall-k-1-2-cd%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
I cannot just let $k=1$, because inequality in the constraint should hold for all $k$, i.e. $x_1+cdots+x_nleq y_1+cdots+y_n$ when $k=1$ till $x_nleq y_n$ when $k=n$
– Lee
Nov 19 at 8:13