What is $maxlimits_{sum_{i=k}^{n}x_ileqsum_{i=k}^{n}y_i \forall k=1,2,cdots,n} prod_{i=1}^{n} x_i$











up vote
2
down vote

favorite
2












begin{array}{ll} text{maximize} & prod_{i=1}^{n}x_i\ text{subject to} & mathrm sum_{i=k}^{n}x_ileqsum_{i=k}^{n}y_i \forall k=1,2,cdots,nend{array}



if $x_1geqcdotsgeq x_n$ and $y_1geqcdotsgeq y_nquad$ ($x_i,y_iin mathbb{R}^+$ and all $y_i$ are given).



My attempt: By induction



For $n=2$, we need to maximize $x_1x_2$ when $x_1+x_2leq y_1+y_2$ and $x_2leq y_2$. Let $x_2=y_2-tquad$ ($tgeq0$), then $x_1leq y_1+t$, thus to maximize $x_1x_2$, we let $x_1=y_1+t$. Then $x_1x_2=(y_2-t)(y_1+t)=y_1y_2-(y_1-y_2)t-t^2leq y_1y_2$. Thus $max x_1x_2=y_1y_2$ when $t=0$.



Suppose $maxlimits_{{sum_{i=k}^{n}x_ileqsum_{i=k}^{n}y_i \forall k=1,2,cdots,n}} prod_{i=1}^{n}x_i=prod_{i=1}^{n}y_i$, then begin{array}{ll}maxlimits_{{sum_{i=k}^{n+1}x_ileqsum_{i=k}^{n+1}y_i \forall k=1,2,cdots,n+1}} prod_{i=1}^{n+1}x_i=(prod_{i=1}^{n}y_i)x_{n+1}leq(prod_{i=1}^{n}y_i)y_{n+1}.end{array}



I think I cannot use induction like that because of constraints, any other method to try to prove my hypothesis that maximum is achieved when $x_i=y_i$?










share|cite|improve this question






















  • I cannot just let $k=1$, because inequality in the constraint should hold for all $k$, i.e. $x_1+cdots+x_nleq y_1+cdots+y_n$ when $k=1$ till $x_nleq y_n$ when $k=n$
    – Lee
    Nov 19 at 8:13















up vote
2
down vote

favorite
2












begin{array}{ll} text{maximize} & prod_{i=1}^{n}x_i\ text{subject to} & mathrm sum_{i=k}^{n}x_ileqsum_{i=k}^{n}y_i \forall k=1,2,cdots,nend{array}



if $x_1geqcdotsgeq x_n$ and $y_1geqcdotsgeq y_nquad$ ($x_i,y_iin mathbb{R}^+$ and all $y_i$ are given).



My attempt: By induction



For $n=2$, we need to maximize $x_1x_2$ when $x_1+x_2leq y_1+y_2$ and $x_2leq y_2$. Let $x_2=y_2-tquad$ ($tgeq0$), then $x_1leq y_1+t$, thus to maximize $x_1x_2$, we let $x_1=y_1+t$. Then $x_1x_2=(y_2-t)(y_1+t)=y_1y_2-(y_1-y_2)t-t^2leq y_1y_2$. Thus $max x_1x_2=y_1y_2$ when $t=0$.



Suppose $maxlimits_{{sum_{i=k}^{n}x_ileqsum_{i=k}^{n}y_i \forall k=1,2,cdots,n}} prod_{i=1}^{n}x_i=prod_{i=1}^{n}y_i$, then begin{array}{ll}maxlimits_{{sum_{i=k}^{n+1}x_ileqsum_{i=k}^{n+1}y_i \forall k=1,2,cdots,n+1}} prod_{i=1}^{n+1}x_i=(prod_{i=1}^{n}y_i)x_{n+1}leq(prod_{i=1}^{n}y_i)y_{n+1}.end{array}



I think I cannot use induction like that because of constraints, any other method to try to prove my hypothesis that maximum is achieved when $x_i=y_i$?










share|cite|improve this question






















  • I cannot just let $k=1$, because inequality in the constraint should hold for all $k$, i.e. $x_1+cdots+x_nleq y_1+cdots+y_n$ when $k=1$ till $x_nleq y_n$ when $k=n$
    – Lee
    Nov 19 at 8:13













up vote
2
down vote

favorite
2









up vote
2
down vote

favorite
2






2





begin{array}{ll} text{maximize} & prod_{i=1}^{n}x_i\ text{subject to} & mathrm sum_{i=k}^{n}x_ileqsum_{i=k}^{n}y_i \forall k=1,2,cdots,nend{array}



if $x_1geqcdotsgeq x_n$ and $y_1geqcdotsgeq y_nquad$ ($x_i,y_iin mathbb{R}^+$ and all $y_i$ are given).



My attempt: By induction



For $n=2$, we need to maximize $x_1x_2$ when $x_1+x_2leq y_1+y_2$ and $x_2leq y_2$. Let $x_2=y_2-tquad$ ($tgeq0$), then $x_1leq y_1+t$, thus to maximize $x_1x_2$, we let $x_1=y_1+t$. Then $x_1x_2=(y_2-t)(y_1+t)=y_1y_2-(y_1-y_2)t-t^2leq y_1y_2$. Thus $max x_1x_2=y_1y_2$ when $t=0$.



Suppose $maxlimits_{{sum_{i=k}^{n}x_ileqsum_{i=k}^{n}y_i \forall k=1,2,cdots,n}} prod_{i=1}^{n}x_i=prod_{i=1}^{n}y_i$, then begin{array}{ll}maxlimits_{{sum_{i=k}^{n+1}x_ileqsum_{i=k}^{n+1}y_i \forall k=1,2,cdots,n+1}} prod_{i=1}^{n+1}x_i=(prod_{i=1}^{n}y_i)x_{n+1}leq(prod_{i=1}^{n}y_i)y_{n+1}.end{array}



I think I cannot use induction like that because of constraints, any other method to try to prove my hypothesis that maximum is achieved when $x_i=y_i$?










share|cite|improve this question













begin{array}{ll} text{maximize} & prod_{i=1}^{n}x_i\ text{subject to} & mathrm sum_{i=k}^{n}x_ileqsum_{i=k}^{n}y_i \forall k=1,2,cdots,nend{array}



if $x_1geqcdotsgeq x_n$ and $y_1geqcdotsgeq y_nquad$ ($x_i,y_iin mathbb{R}^+$ and all $y_i$ are given).



My attempt: By induction



For $n=2$, we need to maximize $x_1x_2$ when $x_1+x_2leq y_1+y_2$ and $x_2leq y_2$. Let $x_2=y_2-tquad$ ($tgeq0$), then $x_1leq y_1+t$, thus to maximize $x_1x_2$, we let $x_1=y_1+t$. Then $x_1x_2=(y_2-t)(y_1+t)=y_1y_2-(y_1-y_2)t-t^2leq y_1y_2$. Thus $max x_1x_2=y_1y_2$ when $t=0$.



Suppose $maxlimits_{{sum_{i=k}^{n}x_ileqsum_{i=k}^{n}y_i \forall k=1,2,cdots,n}} prod_{i=1}^{n}x_i=prod_{i=1}^{n}y_i$, then begin{array}{ll}maxlimits_{{sum_{i=k}^{n+1}x_ileqsum_{i=k}^{n+1}y_i \forall k=1,2,cdots,n+1}} prod_{i=1}^{n+1}x_i=(prod_{i=1}^{n}y_i)x_{n+1}leq(prod_{i=1}^{n}y_i)y_{n+1}.end{array}



I think I cannot use induction like that because of constraints, any other method to try to prove my hypothesis that maximum is achieved when $x_i=y_i$?







optimization






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 19 at 7:52









Lee

907




907












  • I cannot just let $k=1$, because inequality in the constraint should hold for all $k$, i.e. $x_1+cdots+x_nleq y_1+cdots+y_n$ when $k=1$ till $x_nleq y_n$ when $k=n$
    – Lee
    Nov 19 at 8:13


















  • I cannot just let $k=1$, because inequality in the constraint should hold for all $k$, i.e. $x_1+cdots+x_nleq y_1+cdots+y_n$ when $k=1$ till $x_nleq y_n$ when $k=n$
    – Lee
    Nov 19 at 8:13
















I cannot just let $k=1$, because inequality in the constraint should hold for all $k$, i.e. $x_1+cdots+x_nleq y_1+cdots+y_n$ when $k=1$ till $x_nleq y_n$ when $k=n$
– Lee
Nov 19 at 8:13




I cannot just let $k=1$, because inequality in the constraint should hold for all $k$, i.e. $x_1+cdots+x_nleq y_1+cdots+y_n$ when $k=1$ till $x_nleq y_n$ when $k=n$
– Lee
Nov 19 at 8:13















active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004633%2fwhat-is-max-limits-sum-i-knx-i-leq-sum-i-kny-i-forall-k-1-2-cd%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004633%2fwhat-is-max-limits-sum-i-knx-i-leq-sum-i-kny-i-forall-k-1-2-cd%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to change which sound is reproduced for terminal bell?

Can I use Tabulator js library in my java Spring + Thymeleaf project?

Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents