! Misplaced noalign












0














I cannot solve this error:



! Misplaced noalign.
hline ->noalign
{ifnum 0=`}fi hrule @height arrayrulewidth futurelet...
l.12 hline


My code is this:



documentclass{article}

usepackage{slashbox}
usepackage{siunitx}

begin{document}

begin{table}
begin{center}
begin{tabular}{|c||c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
$
hline
backslashbox{theta_1}{theta_2} & ang{0} & ang{30} & ang{45} & ang{60} & ang{90} & ang{120} & ang{135} & ang{150} & ang{180} & ang{210} & ang{225} & ang{240} & ang{270} & ang{300} & ang{315} & ang{330} & ang{360} \
hline hline
ang{0} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
ang{30} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} \
hline
ang{45} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{60} & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} \
hline
ang{90} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 \
hline
ang{120} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} \
hline
ang{135} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{150} & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2] & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} \
hline
ang{180} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 \
hline
ang{210} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} \
hline
ang{225} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{240} & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}-sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} \
hline
ang{270} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 \
hline
ang{300} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{1}{2} \
hline
ang{315} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{330} & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} \
hline
ang{360} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
$
end{tabular}
end{center}
end{table}

end{document}


I am a TeX beginner, so I'd appreciate any help.










share|improve this question



























    0














    I cannot solve this error:



    ! Misplaced noalign.
    hline ->noalign
    {ifnum 0=`}fi hrule @height arrayrulewidth futurelet...
    l.12 hline


    My code is this:



    documentclass{article}

    usepackage{slashbox}
    usepackage{siunitx}

    begin{document}

    begin{table}
    begin{center}
    begin{tabular}{|c||c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
    $
    hline
    backslashbox{theta_1}{theta_2} & ang{0} & ang{30} & ang{45} & ang{60} & ang{90} & ang{120} & ang{135} & ang{150} & ang{180} & ang{210} & ang{225} & ang{240} & ang{270} & ang{300} & ang{315} & ang{330} & ang{360} \
    hline hline
    ang{0} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
    hline
    ang{30} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} \
    hline
    ang{45} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} \
    hline
    ang{60} & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} \
    hline
    ang{90} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 \
    hline
    ang{120} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} \
    hline
    ang{135} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} \
    hline
    ang{150} & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2] & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} \
    hline
    ang{180} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 \
    hline
    ang{210} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} \
    hline
    ang{225} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} \
    hline
    ang{240} & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}-sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} \
    hline
    ang{270} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 \
    hline
    ang{300} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{1}{2} \
    hline
    ang{315} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} \
    hline
    ang{330} & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} \
    hline
    ang{360} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
    hline
    $
    end{tabular}
    end{center}
    end{table}

    end{document}


    I am a TeX beginner, so I'd appreciate any help.










    share|improve this question

























      0












      0








      0


      0





      I cannot solve this error:



      ! Misplaced noalign.
      hline ->noalign
      {ifnum 0=`}fi hrule @height arrayrulewidth futurelet...
      l.12 hline


      My code is this:



      documentclass{article}

      usepackage{slashbox}
      usepackage{siunitx}

      begin{document}

      begin{table}
      begin{center}
      begin{tabular}{|c||c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
      $
      hline
      backslashbox{theta_1}{theta_2} & ang{0} & ang{30} & ang{45} & ang{60} & ang{90} & ang{120} & ang{135} & ang{150} & ang{180} & ang{210} & ang{225} & ang{240} & ang{270} & ang{300} & ang{315} & ang{330} & ang{360} \
      hline hline
      ang{0} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
      hline
      ang{30} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} \
      hline
      ang{45} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} \
      hline
      ang{60} & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} \
      hline
      ang{90} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 \
      hline
      ang{120} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} \
      hline
      ang{135} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} \
      hline
      ang{150} & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2] & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} \
      hline
      ang{180} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 \
      hline
      ang{210} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} \
      hline
      ang{225} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} \
      hline
      ang{240} & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}-sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} \
      hline
      ang{270} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 \
      hline
      ang{300} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{1}{2} \
      hline
      ang{315} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} \
      hline
      ang{330} & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} \
      hline
      ang{360} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
      hline
      $
      end{tabular}
      end{center}
      end{table}

      end{document}


      I am a TeX beginner, so I'd appreciate any help.










      share|improve this question













      I cannot solve this error:



      ! Misplaced noalign.
      hline ->noalign
      {ifnum 0=`}fi hrule @height arrayrulewidth futurelet...
      l.12 hline


      My code is this:



      documentclass{article}

      usepackage{slashbox}
      usepackage{siunitx}

      begin{document}

      begin{table}
      begin{center}
      begin{tabular}{|c||c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
      $
      hline
      backslashbox{theta_1}{theta_2} & ang{0} & ang{30} & ang{45} & ang{60} & ang{90} & ang{120} & ang{135} & ang{150} & ang{180} & ang{210} & ang{225} & ang{240} & ang{270} & ang{300} & ang{315} & ang{330} & ang{360} \
      hline hline
      ang{0} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
      hline
      ang{30} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} \
      hline
      ang{45} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} \
      hline
      ang{60} & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} \
      hline
      ang{90} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 \
      hline
      ang{120} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} \
      hline
      ang{135} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} \
      hline
      ang{150} & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2] & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} \
      hline
      ang{180} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 \
      hline
      ang{210} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} \
      hline
      ang{225} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} \
      hline
      ang{240} & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}-sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} \
      hline
      ang{270} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 \
      hline
      ang{300} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{1}{2} \
      hline
      ang{315} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} \
      hline
      ang{330} & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} \
      hline
      ang{360} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
      hline
      $
      end{tabular}
      end{center}
      end{table}

      end{document}


      I am a TeX beginner, so I'd appreciate any help.







      errors






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Dec 9 at 14:43









      underscore

      31




      31






















          1 Answer
          1






          active

          oldest

          votes


















          1














          In order to set entries of a table in math mode, you need array. However, neither slashbox nor diagbox (more recent and maintained) apparently can be used in array.



          A way out is to tell LaTeX to set every column in math mode. But you can't just state $ after begin{tabular}{...} and before end{tabular}.



          documentclass{article}
          usepackage[a4paper,landscape,margin=1cm]{geometry}

          usepackage{diagbox,array}
          usepackage{siunitx}

          begin{document}

          begin{table}
          centering
          addtolength{tabcolsep}{-3pt}
          begin{tabular}{|c|| *{17}{>{$}c<{$}|}}
          hline
          diagbox{$theta_1$}{$theta_2$}
          & ang{0} & ang{30} & ang{45} & ang{60} & ang{90} & ang{120} & ang{135} & ang{150} & ang{180} & ang{210} & ang{225} & ang{240} & ang{270} & ang{300} & ang{315} & ang{330} & ang{360} \
          hline hline
          ang{0} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
          hline
          ang{30} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} \
          hline
          ang{45} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} \
          hline
          ang{60} & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} \
          hline
          ang{90} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 \
          hline
          ang{120} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} \
          hline
          ang{135} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} \
          hline
          ang{150} & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} \
          hline
          ang{180} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 \
          hline
          ang{210} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} \
          hline
          ang{225} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} \
          hline
          ang{240} & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}-sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} \
          hline
          ang{270} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 \
          hline
          ang{300} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{1}{2} \
          hline
          ang{315} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} \
          hline
          ang{330} & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} \
          hline
          ang{360} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
          hline
          end{tabular}
          end{table}

          end{document}


          I'm not sure what such a table can be useful for.



          enter image description here



          With square cells: it's really horrible! :-)



          documentclass{article}
          usepackage[a0paper]{geometry}
          usepackage{amsmath}
          usepackage{diagbox,array}
          usepackage{siunitx}

          newlength{bigtablewd}

          begin{document}

          begin{table}
          centering
          settowidth{bigtablewd}{$-dfrac{sqrt{6}+sqrt{2}}{4}$}
          newcommand{tablestrut}{%
          vphantom{$left|rule{0pt}{dimexpr0.5bigtablewd+tabcolsep}right.$}%
          }
          begin{tabular}{|c|| *{17}{>{tablestrut$displaystyle}w{c}{bigtablewd}<{$}|}}
          hline
          diagbox{$theta_1$}{$theta_2$}
          & ang{0} & ang{30} & ang{45} & ang{60} & ang{90} & ang{120} & ang{135} & ang{150} & ang{180} & ang{210} & ang{225} & ang{240} & ang{270} & ang{300} & ang{315} & ang{330} & ang{360} \
          hline hline
          ang{0} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
          hline
          ang{30} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} \
          hline
          ang{45} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} \
          hline
          ang{60} & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} \
          hline
          ang{90} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 \
          hline
          ang{120} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} \
          hline
          ang{135} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} \
          hline
          ang{150} & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} \
          hline
          ang{180} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 \
          hline
          ang{210} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} \
          hline
          ang{225} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} \
          hline
          ang{240} & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}-sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} \
          hline
          ang{270} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 \
          hline
          ang{300} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{1}{2} \
          hline
          ang{315} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} \
          hline
          ang{330} & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} \
          hline
          ang{360} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
          hline
          end{tabular}
          end{table}

          end{document}


          enter image description here






          share|improve this answer























          • Thank you so much. I have one more question. How can I make the all cells square?
            – underscore
            Dec 9 at 15:48










          • @underscore That's easy, but you'll need a huge sheet of paper to print it.
            – egreg
            Dec 9 at 16:02










          • It's OK, because I'll use this chart in an A0 poster. I tried to make the all cells square, but it's not going well...
            – underscore
            Dec 9 at 16:10










          • I appreciate your cooperation,It was very helpful!!
            – underscore
            Dec 9 at 16:39











          Your Answer








          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "85"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f463952%2fmisplaced-noalign%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1














          In order to set entries of a table in math mode, you need array. However, neither slashbox nor diagbox (more recent and maintained) apparently can be used in array.



          A way out is to tell LaTeX to set every column in math mode. But you can't just state $ after begin{tabular}{...} and before end{tabular}.



          documentclass{article}
          usepackage[a4paper,landscape,margin=1cm]{geometry}

          usepackage{diagbox,array}
          usepackage{siunitx}

          begin{document}

          begin{table}
          centering
          addtolength{tabcolsep}{-3pt}
          begin{tabular}{|c|| *{17}{>{$}c<{$}|}}
          hline
          diagbox{$theta_1$}{$theta_2$}
          & ang{0} & ang{30} & ang{45} & ang{60} & ang{90} & ang{120} & ang{135} & ang{150} & ang{180} & ang{210} & ang{225} & ang{240} & ang{270} & ang{300} & ang{315} & ang{330} & ang{360} \
          hline hline
          ang{0} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
          hline
          ang{30} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} \
          hline
          ang{45} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} \
          hline
          ang{60} & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} \
          hline
          ang{90} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 \
          hline
          ang{120} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} \
          hline
          ang{135} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} \
          hline
          ang{150} & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} \
          hline
          ang{180} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 \
          hline
          ang{210} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} \
          hline
          ang{225} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} \
          hline
          ang{240} & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}-sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} \
          hline
          ang{270} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 \
          hline
          ang{300} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{1}{2} \
          hline
          ang{315} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} \
          hline
          ang{330} & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} \
          hline
          ang{360} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
          hline
          end{tabular}
          end{table}

          end{document}


          I'm not sure what such a table can be useful for.



          enter image description here



          With square cells: it's really horrible! :-)



          documentclass{article}
          usepackage[a0paper]{geometry}
          usepackage{amsmath}
          usepackage{diagbox,array}
          usepackage{siunitx}

          newlength{bigtablewd}

          begin{document}

          begin{table}
          centering
          settowidth{bigtablewd}{$-dfrac{sqrt{6}+sqrt{2}}{4}$}
          newcommand{tablestrut}{%
          vphantom{$left|rule{0pt}{dimexpr0.5bigtablewd+tabcolsep}right.$}%
          }
          begin{tabular}{|c|| *{17}{>{tablestrut$displaystyle}w{c}{bigtablewd}<{$}|}}
          hline
          diagbox{$theta_1$}{$theta_2$}
          & ang{0} & ang{30} & ang{45} & ang{60} & ang{90} & ang{120} & ang{135} & ang{150} & ang{180} & ang{210} & ang{225} & ang{240} & ang{270} & ang{300} & ang{315} & ang{330} & ang{360} \
          hline hline
          ang{0} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
          hline
          ang{30} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} \
          hline
          ang{45} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} \
          hline
          ang{60} & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} \
          hline
          ang{90} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 \
          hline
          ang{120} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} \
          hline
          ang{135} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} \
          hline
          ang{150} & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} \
          hline
          ang{180} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 \
          hline
          ang{210} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} \
          hline
          ang{225} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} \
          hline
          ang{240} & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}-sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} \
          hline
          ang{270} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 \
          hline
          ang{300} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{1}{2} \
          hline
          ang{315} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} \
          hline
          ang{330} & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} \
          hline
          ang{360} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
          hline
          end{tabular}
          end{table}

          end{document}


          enter image description here






          share|improve this answer























          • Thank you so much. I have one more question. How can I make the all cells square?
            – underscore
            Dec 9 at 15:48










          • @underscore That's easy, but you'll need a huge sheet of paper to print it.
            – egreg
            Dec 9 at 16:02










          • It's OK, because I'll use this chart in an A0 poster. I tried to make the all cells square, but it's not going well...
            – underscore
            Dec 9 at 16:10










          • I appreciate your cooperation,It was very helpful!!
            – underscore
            Dec 9 at 16:39
















          1














          In order to set entries of a table in math mode, you need array. However, neither slashbox nor diagbox (more recent and maintained) apparently can be used in array.



          A way out is to tell LaTeX to set every column in math mode. But you can't just state $ after begin{tabular}{...} and before end{tabular}.



          documentclass{article}
          usepackage[a4paper,landscape,margin=1cm]{geometry}

          usepackage{diagbox,array}
          usepackage{siunitx}

          begin{document}

          begin{table}
          centering
          addtolength{tabcolsep}{-3pt}
          begin{tabular}{|c|| *{17}{>{$}c<{$}|}}
          hline
          diagbox{$theta_1$}{$theta_2$}
          & ang{0} & ang{30} & ang{45} & ang{60} & ang{90} & ang{120} & ang{135} & ang{150} & ang{180} & ang{210} & ang{225} & ang{240} & ang{270} & ang{300} & ang{315} & ang{330} & ang{360} \
          hline hline
          ang{0} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
          hline
          ang{30} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} \
          hline
          ang{45} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} \
          hline
          ang{60} & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} \
          hline
          ang{90} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 \
          hline
          ang{120} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} \
          hline
          ang{135} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} \
          hline
          ang{150} & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} \
          hline
          ang{180} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 \
          hline
          ang{210} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} \
          hline
          ang{225} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} \
          hline
          ang{240} & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}-sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} \
          hline
          ang{270} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 \
          hline
          ang{300} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{1}{2} \
          hline
          ang{315} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} \
          hline
          ang{330} & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} \
          hline
          ang{360} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
          hline
          end{tabular}
          end{table}

          end{document}


          I'm not sure what such a table can be useful for.



          enter image description here



          With square cells: it's really horrible! :-)



          documentclass{article}
          usepackage[a0paper]{geometry}
          usepackage{amsmath}
          usepackage{diagbox,array}
          usepackage{siunitx}

          newlength{bigtablewd}

          begin{document}

          begin{table}
          centering
          settowidth{bigtablewd}{$-dfrac{sqrt{6}+sqrt{2}}{4}$}
          newcommand{tablestrut}{%
          vphantom{$left|rule{0pt}{dimexpr0.5bigtablewd+tabcolsep}right.$}%
          }
          begin{tabular}{|c|| *{17}{>{tablestrut$displaystyle}w{c}{bigtablewd}<{$}|}}
          hline
          diagbox{$theta_1$}{$theta_2$}
          & ang{0} & ang{30} & ang{45} & ang{60} & ang{90} & ang{120} & ang{135} & ang{150} & ang{180} & ang{210} & ang{225} & ang{240} & ang{270} & ang{300} & ang{315} & ang{330} & ang{360} \
          hline hline
          ang{0} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
          hline
          ang{30} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} \
          hline
          ang{45} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} \
          hline
          ang{60} & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} \
          hline
          ang{90} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 \
          hline
          ang{120} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} \
          hline
          ang{135} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} \
          hline
          ang{150} & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} \
          hline
          ang{180} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 \
          hline
          ang{210} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} \
          hline
          ang{225} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} \
          hline
          ang{240} & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}-sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} \
          hline
          ang{270} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 \
          hline
          ang{300} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{1}{2} \
          hline
          ang{315} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} \
          hline
          ang{330} & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} \
          hline
          ang{360} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
          hline
          end{tabular}
          end{table}

          end{document}


          enter image description here






          share|improve this answer























          • Thank you so much. I have one more question. How can I make the all cells square?
            – underscore
            Dec 9 at 15:48










          • @underscore That's easy, but you'll need a huge sheet of paper to print it.
            – egreg
            Dec 9 at 16:02










          • It's OK, because I'll use this chart in an A0 poster. I tried to make the all cells square, but it's not going well...
            – underscore
            Dec 9 at 16:10










          • I appreciate your cooperation,It was very helpful!!
            – underscore
            Dec 9 at 16:39














          1












          1








          1






          In order to set entries of a table in math mode, you need array. However, neither slashbox nor diagbox (more recent and maintained) apparently can be used in array.



          A way out is to tell LaTeX to set every column in math mode. But you can't just state $ after begin{tabular}{...} and before end{tabular}.



          documentclass{article}
          usepackage[a4paper,landscape,margin=1cm]{geometry}

          usepackage{diagbox,array}
          usepackage{siunitx}

          begin{document}

          begin{table}
          centering
          addtolength{tabcolsep}{-3pt}
          begin{tabular}{|c|| *{17}{>{$}c<{$}|}}
          hline
          diagbox{$theta_1$}{$theta_2$}
          & ang{0} & ang{30} & ang{45} & ang{60} & ang{90} & ang{120} & ang{135} & ang{150} & ang{180} & ang{210} & ang{225} & ang{240} & ang{270} & ang{300} & ang{315} & ang{330} & ang{360} \
          hline hline
          ang{0} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
          hline
          ang{30} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} \
          hline
          ang{45} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} \
          hline
          ang{60} & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} \
          hline
          ang{90} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 \
          hline
          ang{120} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} \
          hline
          ang{135} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} \
          hline
          ang{150} & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} \
          hline
          ang{180} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 \
          hline
          ang{210} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} \
          hline
          ang{225} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} \
          hline
          ang{240} & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}-sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} \
          hline
          ang{270} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 \
          hline
          ang{300} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{1}{2} \
          hline
          ang{315} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} \
          hline
          ang{330} & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} \
          hline
          ang{360} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
          hline
          end{tabular}
          end{table}

          end{document}


          I'm not sure what such a table can be useful for.



          enter image description here



          With square cells: it's really horrible! :-)



          documentclass{article}
          usepackage[a0paper]{geometry}
          usepackage{amsmath}
          usepackage{diagbox,array}
          usepackage{siunitx}

          newlength{bigtablewd}

          begin{document}

          begin{table}
          centering
          settowidth{bigtablewd}{$-dfrac{sqrt{6}+sqrt{2}}{4}$}
          newcommand{tablestrut}{%
          vphantom{$left|rule{0pt}{dimexpr0.5bigtablewd+tabcolsep}right.$}%
          }
          begin{tabular}{|c|| *{17}{>{tablestrut$displaystyle}w{c}{bigtablewd}<{$}|}}
          hline
          diagbox{$theta_1$}{$theta_2$}
          & ang{0} & ang{30} & ang{45} & ang{60} & ang{90} & ang{120} & ang{135} & ang{150} & ang{180} & ang{210} & ang{225} & ang{240} & ang{270} & ang{300} & ang{315} & ang{330} & ang{360} \
          hline hline
          ang{0} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
          hline
          ang{30} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} \
          hline
          ang{45} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} \
          hline
          ang{60} & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} \
          hline
          ang{90} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 \
          hline
          ang{120} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} \
          hline
          ang{135} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} \
          hline
          ang{150} & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} \
          hline
          ang{180} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 \
          hline
          ang{210} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} \
          hline
          ang{225} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} \
          hline
          ang{240} & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}-sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} \
          hline
          ang{270} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 \
          hline
          ang{300} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{1}{2} \
          hline
          ang{315} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} \
          hline
          ang{330} & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} \
          hline
          ang{360} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
          hline
          end{tabular}
          end{table}

          end{document}


          enter image description here






          share|improve this answer














          In order to set entries of a table in math mode, you need array. However, neither slashbox nor diagbox (more recent and maintained) apparently can be used in array.



          A way out is to tell LaTeX to set every column in math mode. But you can't just state $ after begin{tabular}{...} and before end{tabular}.



          documentclass{article}
          usepackage[a4paper,landscape,margin=1cm]{geometry}

          usepackage{diagbox,array}
          usepackage{siunitx}

          begin{document}

          begin{table}
          centering
          addtolength{tabcolsep}{-3pt}
          begin{tabular}{|c|| *{17}{>{$}c<{$}|}}
          hline
          diagbox{$theta_1$}{$theta_2$}
          & ang{0} & ang{30} & ang{45} & ang{60} & ang{90} & ang{120} & ang{135} & ang{150} & ang{180} & ang{210} & ang{225} & ang{240} & ang{270} & ang{300} & ang{315} & ang{330} & ang{360} \
          hline hline
          ang{0} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
          hline
          ang{30} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} \
          hline
          ang{45} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} \
          hline
          ang{60} & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} \
          hline
          ang{90} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 \
          hline
          ang{120} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} \
          hline
          ang{135} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} \
          hline
          ang{150} & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} \
          hline
          ang{180} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 \
          hline
          ang{210} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} \
          hline
          ang{225} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} \
          hline
          ang{240} & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}-sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} \
          hline
          ang{270} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 \
          hline
          ang{300} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{1}{2} \
          hline
          ang{315} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} \
          hline
          ang{330} & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} \
          hline
          ang{360} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
          hline
          end{tabular}
          end{table}

          end{document}


          I'm not sure what such a table can be useful for.



          enter image description here



          With square cells: it's really horrible! :-)



          documentclass{article}
          usepackage[a0paper]{geometry}
          usepackage{amsmath}
          usepackage{diagbox,array}
          usepackage{siunitx}

          newlength{bigtablewd}

          begin{document}

          begin{table}
          centering
          settowidth{bigtablewd}{$-dfrac{sqrt{6}+sqrt{2}}{4}$}
          newcommand{tablestrut}{%
          vphantom{$left|rule{0pt}{dimexpr0.5bigtablewd+tabcolsep}right.$}%
          }
          begin{tabular}{|c|| *{17}{>{tablestrut$displaystyle}w{c}{bigtablewd}<{$}|}}
          hline
          diagbox{$theta_1$}{$theta_2$}
          & ang{0} & ang{30} & ang{45} & ang{60} & ang{90} & ang{120} & ang{135} & ang{150} & ang{180} & ang{210} & ang{225} & ang{240} & ang{270} & ang{300} & ang{315} & ang{330} & ang{360} \
          hline hline
          ang{0} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
          hline
          ang{30} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} \
          hline
          ang{45} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} \
          hline
          ang{60} & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} \
          hline
          ang{90} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 \
          hline
          ang{120} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} \
          hline
          ang{135} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} \
          hline
          ang{150} & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} \
          hline
          ang{180} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 \
          hline
          ang{210} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} \
          hline
          ang{225} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} \
          hline
          ang{240} & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}-sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} \
          hline
          ang{270} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 \
          hline
          ang{300} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{1}{2} \
          hline
          ang{315} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} \
          hline
          ang{330} & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} \
          hline
          ang{360} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
          hline
          end{tabular}
          end{table}

          end{document}


          enter image description here







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Dec 9 at 16:33

























          answered Dec 9 at 15:17









          egreg

          708k8618813163




          708k8618813163












          • Thank you so much. I have one more question. How can I make the all cells square?
            – underscore
            Dec 9 at 15:48










          • @underscore That's easy, but you'll need a huge sheet of paper to print it.
            – egreg
            Dec 9 at 16:02










          • It's OK, because I'll use this chart in an A0 poster. I tried to make the all cells square, but it's not going well...
            – underscore
            Dec 9 at 16:10










          • I appreciate your cooperation,It was very helpful!!
            – underscore
            Dec 9 at 16:39


















          • Thank you so much. I have one more question. How can I make the all cells square?
            – underscore
            Dec 9 at 15:48










          • @underscore That's easy, but you'll need a huge sheet of paper to print it.
            – egreg
            Dec 9 at 16:02










          • It's OK, because I'll use this chart in an A0 poster. I tried to make the all cells square, but it's not going well...
            – underscore
            Dec 9 at 16:10










          • I appreciate your cooperation,It was very helpful!!
            – underscore
            Dec 9 at 16:39
















          Thank you so much. I have one more question. How can I make the all cells square?
          – underscore
          Dec 9 at 15:48




          Thank you so much. I have one more question. How can I make the all cells square?
          – underscore
          Dec 9 at 15:48












          @underscore That's easy, but you'll need a huge sheet of paper to print it.
          – egreg
          Dec 9 at 16:02




          @underscore That's easy, but you'll need a huge sheet of paper to print it.
          – egreg
          Dec 9 at 16:02












          It's OK, because I'll use this chart in an A0 poster. I tried to make the all cells square, but it's not going well...
          – underscore
          Dec 9 at 16:10




          It's OK, because I'll use this chart in an A0 poster. I tried to make the all cells square, but it's not going well...
          – underscore
          Dec 9 at 16:10












          I appreciate your cooperation,It was very helpful!!
          – underscore
          Dec 9 at 16:39




          I appreciate your cooperation,It was very helpful!!
          – underscore
          Dec 9 at 16:39


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f463952%2fmisplaced-noalign%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How to change which sound is reproduced for terminal bell?

          Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

          Can I use Tabulator js library in my java Spring + Thymeleaf project?