! Misplaced noalign
I cannot solve this error:
! Misplaced noalign.
hline ->noalign
{ifnum 0=`}fi hrule @height arrayrulewidth futurelet...
l.12 hline
My code is this:
documentclass{article}
usepackage{slashbox}
usepackage{siunitx}
begin{document}
begin{table}
begin{center}
begin{tabular}{|c||c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
$
hline
backslashbox{theta_1}{theta_2} & ang{0} & ang{30} & ang{45} & ang{60} & ang{90} & ang{120} & ang{135} & ang{150} & ang{180} & ang{210} & ang{225} & ang{240} & ang{270} & ang{300} & ang{315} & ang{330} & ang{360} \
hline hline
ang{0} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
ang{30} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} \
hline
ang{45} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{60} & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} \
hline
ang{90} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 \
hline
ang{120} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} \
hline
ang{135} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{150} & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2] & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} \
hline
ang{180} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 \
hline
ang{210} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} \
hline
ang{225} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{240} & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}-sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} \
hline
ang{270} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 \
hline
ang{300} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{1}{2} \
hline
ang{315} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{330} & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} \
hline
ang{360} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
$
end{tabular}
end{center}
end{table}
end{document}
I am a TeX beginner, so I'd appreciate any help.
errors
add a comment |
I cannot solve this error:
! Misplaced noalign.
hline ->noalign
{ifnum 0=`}fi hrule @height arrayrulewidth futurelet...
l.12 hline
My code is this:
documentclass{article}
usepackage{slashbox}
usepackage{siunitx}
begin{document}
begin{table}
begin{center}
begin{tabular}{|c||c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
$
hline
backslashbox{theta_1}{theta_2} & ang{0} & ang{30} & ang{45} & ang{60} & ang{90} & ang{120} & ang{135} & ang{150} & ang{180} & ang{210} & ang{225} & ang{240} & ang{270} & ang{300} & ang{315} & ang{330} & ang{360} \
hline hline
ang{0} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
ang{30} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} \
hline
ang{45} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{60} & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} \
hline
ang{90} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 \
hline
ang{120} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} \
hline
ang{135} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{150} & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2] & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} \
hline
ang{180} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 \
hline
ang{210} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} \
hline
ang{225} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{240} & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}-sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} \
hline
ang{270} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 \
hline
ang{300} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{1}{2} \
hline
ang{315} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{330} & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} \
hline
ang{360} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
$
end{tabular}
end{center}
end{table}
end{document}
I am a TeX beginner, so I'd appreciate any help.
errors
add a comment |
I cannot solve this error:
! Misplaced noalign.
hline ->noalign
{ifnum 0=`}fi hrule @height arrayrulewidth futurelet...
l.12 hline
My code is this:
documentclass{article}
usepackage{slashbox}
usepackage{siunitx}
begin{document}
begin{table}
begin{center}
begin{tabular}{|c||c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
$
hline
backslashbox{theta_1}{theta_2} & ang{0} & ang{30} & ang{45} & ang{60} & ang{90} & ang{120} & ang{135} & ang{150} & ang{180} & ang{210} & ang{225} & ang{240} & ang{270} & ang{300} & ang{315} & ang{330} & ang{360} \
hline hline
ang{0} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
ang{30} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} \
hline
ang{45} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{60} & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} \
hline
ang{90} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 \
hline
ang{120} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} \
hline
ang{135} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{150} & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2] & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} \
hline
ang{180} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 \
hline
ang{210} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} \
hline
ang{225} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{240} & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}-sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} \
hline
ang{270} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 \
hline
ang{300} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{1}{2} \
hline
ang{315} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{330} & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} \
hline
ang{360} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
$
end{tabular}
end{center}
end{table}
end{document}
I am a TeX beginner, so I'd appreciate any help.
errors
I cannot solve this error:
! Misplaced noalign.
hline ->noalign
{ifnum 0=`}fi hrule @height arrayrulewidth futurelet...
l.12 hline
My code is this:
documentclass{article}
usepackage{slashbox}
usepackage{siunitx}
begin{document}
begin{table}
begin{center}
begin{tabular}{|c||c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
$
hline
backslashbox{theta_1}{theta_2} & ang{0} & ang{30} & ang{45} & ang{60} & ang{90} & ang{120} & ang{135} & ang{150} & ang{180} & ang{210} & ang{225} & ang{240} & ang{270} & ang{300} & ang{315} & ang{330} & ang{360} \
hline hline
ang{0} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
ang{30} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} \
hline
ang{45} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{60} & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} \
hline
ang{90} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 \
hline
ang{120} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} \
hline
ang{135} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{150} & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2] & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} \
hline
ang{180} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 \
hline
ang{210} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} \
hline
ang{225} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{240} & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}-sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} \
hline
ang{270} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 \
hline
ang{300} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{1}{2} \
hline
ang{315} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{330} & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} \
hline
ang{360} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
$
end{tabular}
end{center}
end{table}
end{document}
I am a TeX beginner, so I'd appreciate any help.
errors
errors
asked Dec 9 at 14:43
underscore
31
31
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
In order to set entries of a table in math mode, you need array
. However, neither slashbox
nor diagbox
(more recent and maintained) apparently can be used in array
.
A way out is to tell LaTeX to set every column in math mode. But you can't just state $
after begin{tabular}{...}
and before end{tabular}
.
documentclass{article}
usepackage[a4paper,landscape,margin=1cm]{geometry}
usepackage{diagbox,array}
usepackage{siunitx}
begin{document}
begin{table}
centering
addtolength{tabcolsep}{-3pt}
begin{tabular}{|c|| *{17}{>{$}c<{$}|}}
hline
diagbox{$theta_1$}{$theta_2$}
& ang{0} & ang{30} & ang{45} & ang{60} & ang{90} & ang{120} & ang{135} & ang{150} & ang{180} & ang{210} & ang{225} & ang{240} & ang{270} & ang{300} & ang{315} & ang{330} & ang{360} \
hline hline
ang{0} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
ang{30} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} \
hline
ang{45} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{60} & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} \
hline
ang{90} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 \
hline
ang{120} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} \
hline
ang{135} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{150} & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} \
hline
ang{180} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 \
hline
ang{210} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} \
hline
ang{225} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{240} & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}-sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} \
hline
ang{270} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 \
hline
ang{300} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{1}{2} \
hline
ang{315} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{330} & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} \
hline
ang{360} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
end{tabular}
end{table}
end{document}
I'm not sure what such a table can be useful for.
With square cells: it's really horrible! :-)
documentclass{article}
usepackage[a0paper]{geometry}
usepackage{amsmath}
usepackage{diagbox,array}
usepackage{siunitx}
newlength{bigtablewd}
begin{document}
begin{table}
centering
settowidth{bigtablewd}{$-dfrac{sqrt{6}+sqrt{2}}{4}$}
newcommand{tablestrut}{%
vphantom{$left|rule{0pt}{dimexpr0.5bigtablewd+tabcolsep}right.$}%
}
begin{tabular}{|c|| *{17}{>{tablestrut$displaystyle}w{c}{bigtablewd}<{$}|}}
hline
diagbox{$theta_1$}{$theta_2$}
& ang{0} & ang{30} & ang{45} & ang{60} & ang{90} & ang{120} & ang{135} & ang{150} & ang{180} & ang{210} & ang{225} & ang{240} & ang{270} & ang{300} & ang{315} & ang{330} & ang{360} \
hline hline
ang{0} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
ang{30} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} \
hline
ang{45} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{60} & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} \
hline
ang{90} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 \
hline
ang{120} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} \
hline
ang{135} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{150} & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} \
hline
ang{180} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 \
hline
ang{210} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} \
hline
ang{225} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{240} & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}-sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} \
hline
ang{270} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 \
hline
ang{300} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{1}{2} \
hline
ang{315} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{330} & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} \
hline
ang{360} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
end{tabular}
end{table}
end{document}
Thank you so much. I have one more question. How can I make the all cells square?
– underscore
Dec 9 at 15:48
@underscore That's easy, but you'll need a huge sheet of paper to print it.
– egreg
Dec 9 at 16:02
It's OK, because I'll use this chart in an A0 poster. I tried to make the all cells square, but it's not going well...
– underscore
Dec 9 at 16:10
I appreciate your cooperation,It was very helpful!!
– underscore
Dec 9 at 16:39
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "85"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f463952%2fmisplaced-noalign%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
In order to set entries of a table in math mode, you need array
. However, neither slashbox
nor diagbox
(more recent and maintained) apparently can be used in array
.
A way out is to tell LaTeX to set every column in math mode. But you can't just state $
after begin{tabular}{...}
and before end{tabular}
.
documentclass{article}
usepackage[a4paper,landscape,margin=1cm]{geometry}
usepackage{diagbox,array}
usepackage{siunitx}
begin{document}
begin{table}
centering
addtolength{tabcolsep}{-3pt}
begin{tabular}{|c|| *{17}{>{$}c<{$}|}}
hline
diagbox{$theta_1$}{$theta_2$}
& ang{0} & ang{30} & ang{45} & ang{60} & ang{90} & ang{120} & ang{135} & ang{150} & ang{180} & ang{210} & ang{225} & ang{240} & ang{270} & ang{300} & ang{315} & ang{330} & ang{360} \
hline hline
ang{0} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
ang{30} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} \
hline
ang{45} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{60} & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} \
hline
ang{90} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 \
hline
ang{120} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} \
hline
ang{135} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{150} & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} \
hline
ang{180} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 \
hline
ang{210} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} \
hline
ang{225} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{240} & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}-sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} \
hline
ang{270} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 \
hline
ang{300} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{1}{2} \
hline
ang{315} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{330} & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} \
hline
ang{360} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
end{tabular}
end{table}
end{document}
I'm not sure what such a table can be useful for.
With square cells: it's really horrible! :-)
documentclass{article}
usepackage[a0paper]{geometry}
usepackage{amsmath}
usepackage{diagbox,array}
usepackage{siunitx}
newlength{bigtablewd}
begin{document}
begin{table}
centering
settowidth{bigtablewd}{$-dfrac{sqrt{6}+sqrt{2}}{4}$}
newcommand{tablestrut}{%
vphantom{$left|rule{0pt}{dimexpr0.5bigtablewd+tabcolsep}right.$}%
}
begin{tabular}{|c|| *{17}{>{tablestrut$displaystyle}w{c}{bigtablewd}<{$}|}}
hline
diagbox{$theta_1$}{$theta_2$}
& ang{0} & ang{30} & ang{45} & ang{60} & ang{90} & ang{120} & ang{135} & ang{150} & ang{180} & ang{210} & ang{225} & ang{240} & ang{270} & ang{300} & ang{315} & ang{330} & ang{360} \
hline hline
ang{0} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
ang{30} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} \
hline
ang{45} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{60} & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} \
hline
ang{90} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 \
hline
ang{120} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} \
hline
ang{135} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{150} & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} \
hline
ang{180} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 \
hline
ang{210} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} \
hline
ang{225} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{240} & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}-sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} \
hline
ang{270} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 \
hline
ang{300} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{1}{2} \
hline
ang{315} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{330} & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} \
hline
ang{360} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
end{tabular}
end{table}
end{document}
Thank you so much. I have one more question. How can I make the all cells square?
– underscore
Dec 9 at 15:48
@underscore That's easy, but you'll need a huge sheet of paper to print it.
– egreg
Dec 9 at 16:02
It's OK, because I'll use this chart in an A0 poster. I tried to make the all cells square, but it's not going well...
– underscore
Dec 9 at 16:10
I appreciate your cooperation,It was very helpful!!
– underscore
Dec 9 at 16:39
add a comment |
In order to set entries of a table in math mode, you need array
. However, neither slashbox
nor diagbox
(more recent and maintained) apparently can be used in array
.
A way out is to tell LaTeX to set every column in math mode. But you can't just state $
after begin{tabular}{...}
and before end{tabular}
.
documentclass{article}
usepackage[a4paper,landscape,margin=1cm]{geometry}
usepackage{diagbox,array}
usepackage{siunitx}
begin{document}
begin{table}
centering
addtolength{tabcolsep}{-3pt}
begin{tabular}{|c|| *{17}{>{$}c<{$}|}}
hline
diagbox{$theta_1$}{$theta_2$}
& ang{0} & ang{30} & ang{45} & ang{60} & ang{90} & ang{120} & ang{135} & ang{150} & ang{180} & ang{210} & ang{225} & ang{240} & ang{270} & ang{300} & ang{315} & ang{330} & ang{360} \
hline hline
ang{0} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
ang{30} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} \
hline
ang{45} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{60} & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} \
hline
ang{90} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 \
hline
ang{120} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} \
hline
ang{135} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{150} & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} \
hline
ang{180} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 \
hline
ang{210} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} \
hline
ang{225} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{240} & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}-sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} \
hline
ang{270} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 \
hline
ang{300} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{1}{2} \
hline
ang{315} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{330} & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} \
hline
ang{360} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
end{tabular}
end{table}
end{document}
I'm not sure what such a table can be useful for.
With square cells: it's really horrible! :-)
documentclass{article}
usepackage[a0paper]{geometry}
usepackage{amsmath}
usepackage{diagbox,array}
usepackage{siunitx}
newlength{bigtablewd}
begin{document}
begin{table}
centering
settowidth{bigtablewd}{$-dfrac{sqrt{6}+sqrt{2}}{4}$}
newcommand{tablestrut}{%
vphantom{$left|rule{0pt}{dimexpr0.5bigtablewd+tabcolsep}right.$}%
}
begin{tabular}{|c|| *{17}{>{tablestrut$displaystyle}w{c}{bigtablewd}<{$}|}}
hline
diagbox{$theta_1$}{$theta_2$}
& ang{0} & ang{30} & ang{45} & ang{60} & ang{90} & ang{120} & ang{135} & ang{150} & ang{180} & ang{210} & ang{225} & ang{240} & ang{270} & ang{300} & ang{315} & ang{330} & ang{360} \
hline hline
ang{0} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
ang{30} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} \
hline
ang{45} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{60} & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} \
hline
ang{90} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 \
hline
ang{120} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} \
hline
ang{135} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{150} & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} \
hline
ang{180} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 \
hline
ang{210} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} \
hline
ang{225} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{240} & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}-sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} \
hline
ang{270} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 \
hline
ang{300} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{1}{2} \
hline
ang{315} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{330} & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} \
hline
ang{360} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
end{tabular}
end{table}
end{document}
Thank you so much. I have one more question. How can I make the all cells square?
– underscore
Dec 9 at 15:48
@underscore That's easy, but you'll need a huge sheet of paper to print it.
– egreg
Dec 9 at 16:02
It's OK, because I'll use this chart in an A0 poster. I tried to make the all cells square, but it's not going well...
– underscore
Dec 9 at 16:10
I appreciate your cooperation,It was very helpful!!
– underscore
Dec 9 at 16:39
add a comment |
In order to set entries of a table in math mode, you need array
. However, neither slashbox
nor diagbox
(more recent and maintained) apparently can be used in array
.
A way out is to tell LaTeX to set every column in math mode. But you can't just state $
after begin{tabular}{...}
and before end{tabular}
.
documentclass{article}
usepackage[a4paper,landscape,margin=1cm]{geometry}
usepackage{diagbox,array}
usepackage{siunitx}
begin{document}
begin{table}
centering
addtolength{tabcolsep}{-3pt}
begin{tabular}{|c|| *{17}{>{$}c<{$}|}}
hline
diagbox{$theta_1$}{$theta_2$}
& ang{0} & ang{30} & ang{45} & ang{60} & ang{90} & ang{120} & ang{135} & ang{150} & ang{180} & ang{210} & ang{225} & ang{240} & ang{270} & ang{300} & ang{315} & ang{330} & ang{360} \
hline hline
ang{0} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
ang{30} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} \
hline
ang{45} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{60} & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} \
hline
ang{90} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 \
hline
ang{120} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} \
hline
ang{135} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{150} & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} \
hline
ang{180} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 \
hline
ang{210} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} \
hline
ang{225} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{240} & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}-sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} \
hline
ang{270} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 \
hline
ang{300} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{1}{2} \
hline
ang{315} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{330} & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} \
hline
ang{360} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
end{tabular}
end{table}
end{document}
I'm not sure what such a table can be useful for.
With square cells: it's really horrible! :-)
documentclass{article}
usepackage[a0paper]{geometry}
usepackage{amsmath}
usepackage{diagbox,array}
usepackage{siunitx}
newlength{bigtablewd}
begin{document}
begin{table}
centering
settowidth{bigtablewd}{$-dfrac{sqrt{6}+sqrt{2}}{4}$}
newcommand{tablestrut}{%
vphantom{$left|rule{0pt}{dimexpr0.5bigtablewd+tabcolsep}right.$}%
}
begin{tabular}{|c|| *{17}{>{tablestrut$displaystyle}w{c}{bigtablewd}<{$}|}}
hline
diagbox{$theta_1$}{$theta_2$}
& ang{0} & ang{30} & ang{45} & ang{60} & ang{90} & ang{120} & ang{135} & ang{150} & ang{180} & ang{210} & ang{225} & ang{240} & ang{270} & ang{300} & ang{315} & ang{330} & ang{360} \
hline hline
ang{0} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
ang{30} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} \
hline
ang{45} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{60} & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} \
hline
ang{90} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 \
hline
ang{120} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} \
hline
ang{135} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{150} & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} \
hline
ang{180} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 \
hline
ang{210} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} \
hline
ang{225} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{240} & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}-sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} \
hline
ang{270} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 \
hline
ang{300} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{1}{2} \
hline
ang{315} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{330} & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} \
hline
ang{360} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
end{tabular}
end{table}
end{document}
In order to set entries of a table in math mode, you need array
. However, neither slashbox
nor diagbox
(more recent and maintained) apparently can be used in array
.
A way out is to tell LaTeX to set every column in math mode. But you can't just state $
after begin{tabular}{...}
and before end{tabular}
.
documentclass{article}
usepackage[a4paper,landscape,margin=1cm]{geometry}
usepackage{diagbox,array}
usepackage{siunitx}
begin{document}
begin{table}
centering
addtolength{tabcolsep}{-3pt}
begin{tabular}{|c|| *{17}{>{$}c<{$}|}}
hline
diagbox{$theta_1$}{$theta_2$}
& ang{0} & ang{30} & ang{45} & ang{60} & ang{90} & ang{120} & ang{135} & ang{150} & ang{180} & ang{210} & ang{225} & ang{240} & ang{270} & ang{300} & ang{315} & ang{330} & ang{360} \
hline hline
ang{0} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
ang{30} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} \
hline
ang{45} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{60} & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} \
hline
ang{90} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 \
hline
ang{120} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} \
hline
ang{135} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{150} & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} \
hline
ang{180} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 \
hline
ang{210} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} \
hline
ang{225} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{240} & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}-sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} \
hline
ang{270} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 \
hline
ang{300} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{1}{2} \
hline
ang{315} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{330} & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} \
hline
ang{360} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
end{tabular}
end{table}
end{document}
I'm not sure what such a table can be useful for.
With square cells: it's really horrible! :-)
documentclass{article}
usepackage[a0paper]{geometry}
usepackage{amsmath}
usepackage{diagbox,array}
usepackage{siunitx}
newlength{bigtablewd}
begin{document}
begin{table}
centering
settowidth{bigtablewd}{$-dfrac{sqrt{6}+sqrt{2}}{4}$}
newcommand{tablestrut}{%
vphantom{$left|rule{0pt}{dimexpr0.5bigtablewd+tabcolsep}right.$}%
}
begin{tabular}{|c|| *{17}{>{tablestrut$displaystyle}w{c}{bigtablewd}<{$}|}}
hline
diagbox{$theta_1$}{$theta_2$}
& ang{0} & ang{30} & ang{45} & ang{60} & ang{90} & ang{120} & ang{135} & ang{150} & ang{180} & ang{210} & ang{225} & ang{240} & ang{270} & ang{300} & ang{315} & ang{330} & ang{360} \
hline hline
ang{0} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
ang{30} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} \
hline
ang{45} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{60} & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} \
hline
ang{90} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 \
hline
ang{120} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} \
hline
ang{135} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{150} & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} \
hline
ang{180} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 \
hline
ang{210} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} \
hline
ang{225} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} \
hline
ang{240} & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}-sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} \
hline
ang{270} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 \
hline
ang{300} & -frac{1}{2} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{2} & frac{sqrt{3}}{2} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{sqrt{3}}{2} & frac{1}{2} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{2} & -frac{sqrt{3}}{2} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{1}{2} \
hline
ang{315} & -frac{1}{sqrt{2}} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{sqrt{6}-sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{6}+sqrt{2}}{4} & frac{1}{sqrt{2}} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{sqrt{6}-sqrt{2}}{4} & -frac{1}{sqrt{2}} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{6}+sqrt{2}}{4} & -frac{1}{sqrt{2}} \
hline
ang{330} & -frac{sqrt{3}}{2} & -frac{1}{2} & -frac{sqrt{6}-sqrt{2}}{4} & 0 & frac{1}{2} & frac{sqrt{3}}{2} & frac{sqrt{6}+sqrt{2}}{4} & 1 & frac{sqrt{3}}{2} & frac{1}{2} & frac{sqrt{6}-sqrt{2}}{4} & 0 & -frac{1}{2} & -frac{sqrt{3}}{2} & -frac{sqrt{6}+sqrt{2}}{4} & -1 & -frac{sqrt{3}}{2} \
hline
ang{360} & -1 & -frac{sqrt{3}}{2} & -frac{1}{sqrt{2}} & -frac{1}{2} & 0 & frac{1}{2} & frac{1}{sqrt{2}} & frac{sqrt{3}}{2} & 1 & frac{sqrt{3}}{2} & frac{1}{sqrt{2}} & frac{1}{2} & 0 & -frac{1}{2} & -frac{1}{sqrt{2}} & -frac{sqrt{3}}{2} & -1 \
hline
end{tabular}
end{table}
end{document}
edited Dec 9 at 16:33
answered Dec 9 at 15:17
egreg
708k8618813163
708k8618813163
Thank you so much. I have one more question. How can I make the all cells square?
– underscore
Dec 9 at 15:48
@underscore That's easy, but you'll need a huge sheet of paper to print it.
– egreg
Dec 9 at 16:02
It's OK, because I'll use this chart in an A0 poster. I tried to make the all cells square, but it's not going well...
– underscore
Dec 9 at 16:10
I appreciate your cooperation,It was very helpful!!
– underscore
Dec 9 at 16:39
add a comment |
Thank you so much. I have one more question. How can I make the all cells square?
– underscore
Dec 9 at 15:48
@underscore That's easy, but you'll need a huge sheet of paper to print it.
– egreg
Dec 9 at 16:02
It's OK, because I'll use this chart in an A0 poster. I tried to make the all cells square, but it's not going well...
– underscore
Dec 9 at 16:10
I appreciate your cooperation,It was very helpful!!
– underscore
Dec 9 at 16:39
Thank you so much. I have one more question. How can I make the all cells square?
– underscore
Dec 9 at 15:48
Thank you so much. I have one more question. How can I make the all cells square?
– underscore
Dec 9 at 15:48
@underscore That's easy, but you'll need a huge sheet of paper to print it.
– egreg
Dec 9 at 16:02
@underscore That's easy, but you'll need a huge sheet of paper to print it.
– egreg
Dec 9 at 16:02
It's OK, because I'll use this chart in an A0 poster. I tried to make the all cells square, but it's not going well...
– underscore
Dec 9 at 16:10
It's OK, because I'll use this chart in an A0 poster. I tried to make the all cells square, but it's not going well...
– underscore
Dec 9 at 16:10
I appreciate your cooperation,It was very helpful!!
– underscore
Dec 9 at 16:39
I appreciate your cooperation,It was very helpful!!
– underscore
Dec 9 at 16:39
add a comment |
Thanks for contributing an answer to TeX - LaTeX Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f463952%2fmisplaced-noalign%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown