How does it follow from the Pascal's Triangle that binomial coefficient are integers
up vote
0
down vote
favorite
So I was reading this lemma which states:
Let $m,n$ be natural numbers such that $1 leq m leq n$. Then
begin{equation*}
{nchoose m-1} + {nchoose m} = {n+1choose m}.
end{equation*}
It follows from this lemma using induction that the binomial coefficients are integers, rather than just rational numbers.
Using induction I could only prove that this equation is true for all natural numbers. How would I show that these coefficients are integers?
binomial-coefficients binomial-theorem
add a comment |
up vote
0
down vote
favorite
So I was reading this lemma which states:
Let $m,n$ be natural numbers such that $1 leq m leq n$. Then
begin{equation*}
{nchoose m-1} + {nchoose m} = {n+1choose m}.
end{equation*}
It follows from this lemma using induction that the binomial coefficients are integers, rather than just rational numbers.
Using induction I could only prove that this equation is true for all natural numbers. How would I show that these coefficients are integers?
binomial-coefficients binomial-theorem
Note that $binom{n}{0}=1$ for all $ninBbb N$ as well as $binom{n}{k}=0$ for $k<0$. Applying double induction then along with Pascal's identity and the well known property that the sum of two natural numbers is again a natural number will imply the result.
– JMoravitz
Nov 19 at 23:17
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
So I was reading this lemma which states:
Let $m,n$ be natural numbers such that $1 leq m leq n$. Then
begin{equation*}
{nchoose m-1} + {nchoose m} = {n+1choose m}.
end{equation*}
It follows from this lemma using induction that the binomial coefficients are integers, rather than just rational numbers.
Using induction I could only prove that this equation is true for all natural numbers. How would I show that these coefficients are integers?
binomial-coefficients binomial-theorem
So I was reading this lemma which states:
Let $m,n$ be natural numbers such that $1 leq m leq n$. Then
begin{equation*}
{nchoose m-1} + {nchoose m} = {n+1choose m}.
end{equation*}
It follows from this lemma using induction that the binomial coefficients are integers, rather than just rational numbers.
Using induction I could only prove that this equation is true for all natural numbers. How would I show that these coefficients are integers?
binomial-coefficients binomial-theorem
binomial-coefficients binomial-theorem
asked Nov 19 at 23:12
Seji
153
153
Note that $binom{n}{0}=1$ for all $ninBbb N$ as well as $binom{n}{k}=0$ for $k<0$. Applying double induction then along with Pascal's identity and the well known property that the sum of two natural numbers is again a natural number will imply the result.
– JMoravitz
Nov 19 at 23:17
add a comment |
Note that $binom{n}{0}=1$ for all $ninBbb N$ as well as $binom{n}{k}=0$ for $k<0$. Applying double induction then along with Pascal's identity and the well known property that the sum of two natural numbers is again a natural number will imply the result.
– JMoravitz
Nov 19 at 23:17
Note that $binom{n}{0}=1$ for all $ninBbb N$ as well as $binom{n}{k}=0$ for $k<0$. Applying double induction then along with Pascal's identity and the well known property that the sum of two natural numbers is again a natural number will imply the result.
– JMoravitz
Nov 19 at 23:17
Note that $binom{n}{0}=1$ for all $ninBbb N$ as well as $binom{n}{k}=0$ for $k<0$. Applying double induction then along with Pascal's identity and the well known property that the sum of two natural numbers is again a natural number will imply the result.
– JMoravitz
Nov 19 at 23:17
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
I suppose that, in this context, $binom nm$ is defined as$$binom nm=frac{n!}{m!(n-m)!}.$$With this definition, it is clear that $binom nminmathbb Q$, but it is not clear that it is an integer.
However, it is clear that $binom n0=binom nn=1$, which is an integer. And, since$$binom n{m-1}+binom nm=binom{n+1}m,$$it follows (by induction on $n$), that each $binom nm$ is an integer.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005660%2fhow-does-it-follow-from-the-pascals-triangle-that-binomial-coefficient-are-inte%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
I suppose that, in this context, $binom nm$ is defined as$$binom nm=frac{n!}{m!(n-m)!}.$$With this definition, it is clear that $binom nminmathbb Q$, but it is not clear that it is an integer.
However, it is clear that $binom n0=binom nn=1$, which is an integer. And, since$$binom n{m-1}+binom nm=binom{n+1}m,$$it follows (by induction on $n$), that each $binom nm$ is an integer.
add a comment |
up vote
1
down vote
I suppose that, in this context, $binom nm$ is defined as$$binom nm=frac{n!}{m!(n-m)!}.$$With this definition, it is clear that $binom nminmathbb Q$, but it is not clear that it is an integer.
However, it is clear that $binom n0=binom nn=1$, which is an integer. And, since$$binom n{m-1}+binom nm=binom{n+1}m,$$it follows (by induction on $n$), that each $binom nm$ is an integer.
add a comment |
up vote
1
down vote
up vote
1
down vote
I suppose that, in this context, $binom nm$ is defined as$$binom nm=frac{n!}{m!(n-m)!}.$$With this definition, it is clear that $binom nminmathbb Q$, but it is not clear that it is an integer.
However, it is clear that $binom n0=binom nn=1$, which is an integer. And, since$$binom n{m-1}+binom nm=binom{n+1}m,$$it follows (by induction on $n$), that each $binom nm$ is an integer.
I suppose that, in this context, $binom nm$ is defined as$$binom nm=frac{n!}{m!(n-m)!}.$$With this definition, it is clear that $binom nminmathbb Q$, but it is not clear that it is an integer.
However, it is clear that $binom n0=binom nn=1$, which is an integer. And, since$$binom n{m-1}+binom nm=binom{n+1}m,$$it follows (by induction on $n$), that each $binom nm$ is an integer.
answered Nov 19 at 23:18
José Carlos Santos
146k22117217
146k22117217
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005660%2fhow-does-it-follow-from-the-pascals-triangle-that-binomial-coefficient-are-inte%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Note that $binom{n}{0}=1$ for all $ninBbb N$ as well as $binom{n}{k}=0$ for $k<0$. Applying double induction then along with Pascal's identity and the well known property that the sum of two natural numbers is again a natural number will imply the result.
– JMoravitz
Nov 19 at 23:17