Expected value of X using the geometry of D and the uniformity of the joint distribution.
up vote
-1
down vote
favorite
I've asked this question before, but didn't get the answer I wanted.
Let $(X, Y)$ be a uniformly distributed random point on the quadrilateral $D$ with vertices $(0,0), (2,0), (1,1) text{ and } (0,1).$
(b) Find E[X] and E[Y].
So, $f(x,y)=begin{cases}frac{1}{area(D)}=frac{2}{3}&,x,y in D\ 0&,x,y not in Dend{cases}$.
I've computed the expectations of X and Y using the marginal density functions, but the last time I asked this question, there was a comment saying that its possible to calculate the expectations using the geometric meaning of D and the uniformity, but I still can't get it. Can somebody explain how to do that? Thanks.
probability
add a comment |
up vote
-1
down vote
favorite
I've asked this question before, but didn't get the answer I wanted.
Let $(X, Y)$ be a uniformly distributed random point on the quadrilateral $D$ with vertices $(0,0), (2,0), (1,1) text{ and } (0,1).$
(b) Find E[X] and E[Y].
So, $f(x,y)=begin{cases}frac{1}{area(D)}=frac{2}{3}&,x,y in D\ 0&,x,y not in Dend{cases}$.
I've computed the expectations of X and Y using the marginal density functions, but the last time I asked this question, there was a comment saying that its possible to calculate the expectations using the geometric meaning of D and the uniformity, but I still can't get it. Can somebody explain how to do that? Thanks.
probability
1
Just find the geometric centre. (The centroid, or centre of area).
– Graham Kemp
Nov 19 at 23:35
add a comment |
up vote
-1
down vote
favorite
up vote
-1
down vote
favorite
I've asked this question before, but didn't get the answer I wanted.
Let $(X, Y)$ be a uniformly distributed random point on the quadrilateral $D$ with vertices $(0,0), (2,0), (1,1) text{ and } (0,1).$
(b) Find E[X] and E[Y].
So, $f(x,y)=begin{cases}frac{1}{area(D)}=frac{2}{3}&,x,y in D\ 0&,x,y not in Dend{cases}$.
I've computed the expectations of X and Y using the marginal density functions, but the last time I asked this question, there was a comment saying that its possible to calculate the expectations using the geometric meaning of D and the uniformity, but I still can't get it. Can somebody explain how to do that? Thanks.
probability
I've asked this question before, but didn't get the answer I wanted.
Let $(X, Y)$ be a uniformly distributed random point on the quadrilateral $D$ with vertices $(0,0), (2,0), (1,1) text{ and } (0,1).$
(b) Find E[X] and E[Y].
So, $f(x,y)=begin{cases}frac{1}{area(D)}=frac{2}{3}&,x,y in D\ 0&,x,y not in Dend{cases}$.
I've computed the expectations of X and Y using the marginal density functions, but the last time I asked this question, there was a comment saying that its possible to calculate the expectations using the geometric meaning of D and the uniformity, but I still can't get it. Can somebody explain how to do that? Thanks.
probability
probability
asked Nov 19 at 23:03
dxdydz
1869
1869
1
Just find the geometric centre. (The centroid, or centre of area).
– Graham Kemp
Nov 19 at 23:35
add a comment |
1
Just find the geometric centre. (The centroid, or centre of area).
– Graham Kemp
Nov 19 at 23:35
1
1
Just find the geometric centre. (The centroid, or centre of area).
– Graham Kemp
Nov 19 at 23:35
Just find the geometric centre. (The centroid, or centre of area).
– Graham Kemp
Nov 19 at 23:35
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005649%2fexpected-value-of-x-using-the-geometry-of-d-and-the-uniformity-of-the-joint-dist%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005649%2fexpected-value-of-x-using-the-geometry-of-d-and-the-uniformity-of-the-joint-dist%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Just find the geometric centre. (The centroid, or centre of area).
– Graham Kemp
Nov 19 at 23:35