Prove $lim_{nrightarrowinfty}(1+frac{a}{n}+frac{b}{n^2})^n=lim_{nrightarrowinfty}(1+frac{a}{n})^n$ using...
up vote
3
down vote
favorite
The title says it all, thanks in advance. I just cannot see how to solve this using binomial theorem, maybe use it twice?
calculus sequences-and-series limits exponential-function
add a comment |
up vote
3
down vote
favorite
The title says it all, thanks in advance. I just cannot see how to solve this using binomial theorem, maybe use it twice?
calculus sequences-and-series limits exponential-function
add a comment |
up vote
3
down vote
favorite
up vote
3
down vote
favorite
The title says it all, thanks in advance. I just cannot see how to solve this using binomial theorem, maybe use it twice?
calculus sequences-and-series limits exponential-function
The title says it all, thanks in advance. I just cannot see how to solve this using binomial theorem, maybe use it twice?
calculus sequences-and-series limits exponential-function
calculus sequences-and-series limits exponential-function
edited Nov 14 at 16:39
Yiorgos S. Smyrlis
61.7k1383161
61.7k1383161
asked Nov 14 at 6:25
The R
516
516
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
up vote
4
down vote
accepted
Let $a, b in mathbb{C}$. We begin with the identity
$$ frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n}
= left( 1 + frac{b}{n(n + a)} right)^n. $$
Now let $n > |a|+|b| $. Then by the binomial theorem, together with the simple estimate $binom{n}{k} leq n^k$,
begin{align*}
left| frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n} - 1 right|
&= left| sum_{k=1}^{n} binom{n}{k} frac{b^k}{n^k(n + a)^k} right| \
&leq sum_{k=1}^{n} binom{n}{k} frac{|b|^k}{n^k(n - |a|)^k} \
&leq sum_{k=1}^{n} frac{|b|^k}{(n - |a|)^k} \
&leq frac{|b|}{n - |a| - |b|},
end{align*}
which converges to $0$ as $ntoinfty$. Therefore
$$ lim_{ntoinfty} frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n} = 1, $$
and the desired conclusion follows by assuming that we know the limit $lim left(1 + frac{a}{n} right)^n$ exists in $mathbb{C}setminus{0}$.
add a comment |
up vote
3
down vote
If you are assuming that the limits exists then you can argue as follows: $(1+frac a n +frac b {n^{2}})^{n}-(1+frac a n )^{n}= sum_{j=0}^{n-1} binom {n} {j}(1+frac a n )^{l}(frac b {n^{2}})^{n-j}$. Note that $|(frac b {n^{2}})^{n-j}| leq frac {|b|} {n^{2}}$ as long as $frac {|b|} {n^{2}} <1$. The remaining sum is bounded by $(2+frac {|a|} n)^{n}$ which is bounded.
add a comment |
up vote
3
down vote
Let us first assume that $a,bge 0$. (The remaining cases $a<0$ can be treated analogously.)
Using the fact that
$$
s=lim_{ntoinfty}left(1+frac{a}{n}right)^nin (0,infty),
$$
we obtain that
$$
1le frac{left(1+frac{a}{n}+frac{b}{n^2}right)^n}{left(1+frac{a}{n}right)^n}leleft(1+frac{b}{n^2}right)^n= left(Big(1+frac{b}{n^2}Big)^{n^2}right)^{1/n}to 1
$$
and hence
$$
lim_{ntoinfty}frac{left(1+frac{a}{n}+frac{b}{n^2}right)^n}{left(1+frac{a}{n}right)^n}=1.
$$
Yiorgos.Please elaborate After we obtain that : then the second inequality to third where you lose a/n. If you leave it off in the numerator you make the numerator smaller! Thanks.
– Peter Szilas
Nov 14 at 7:19
add a comment |
up vote
2
down vote
Let $n^2+an+b=(n+p)(n+q)implies p+q=a, pq=b$
$$lim_{ntoinfty}left(1+dfrac{an+b}{n^2}right)^n=lim_{ntoinfty}left(1+dfrac pnright)^nlim_{ntoinfty}left(1+dfrac qnright)^n=e^{p+q}=e^a$$
Now $left(1+dfrac anright)^n=?$
add a comment |
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
accepted
Let $a, b in mathbb{C}$. We begin with the identity
$$ frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n}
= left( 1 + frac{b}{n(n + a)} right)^n. $$
Now let $n > |a|+|b| $. Then by the binomial theorem, together with the simple estimate $binom{n}{k} leq n^k$,
begin{align*}
left| frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n} - 1 right|
&= left| sum_{k=1}^{n} binom{n}{k} frac{b^k}{n^k(n + a)^k} right| \
&leq sum_{k=1}^{n} binom{n}{k} frac{|b|^k}{n^k(n - |a|)^k} \
&leq sum_{k=1}^{n} frac{|b|^k}{(n - |a|)^k} \
&leq frac{|b|}{n - |a| - |b|},
end{align*}
which converges to $0$ as $ntoinfty$. Therefore
$$ lim_{ntoinfty} frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n} = 1, $$
and the desired conclusion follows by assuming that we know the limit $lim left(1 + frac{a}{n} right)^n$ exists in $mathbb{C}setminus{0}$.
add a comment |
up vote
4
down vote
accepted
Let $a, b in mathbb{C}$. We begin with the identity
$$ frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n}
= left( 1 + frac{b}{n(n + a)} right)^n. $$
Now let $n > |a|+|b| $. Then by the binomial theorem, together with the simple estimate $binom{n}{k} leq n^k$,
begin{align*}
left| frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n} - 1 right|
&= left| sum_{k=1}^{n} binom{n}{k} frac{b^k}{n^k(n + a)^k} right| \
&leq sum_{k=1}^{n} binom{n}{k} frac{|b|^k}{n^k(n - |a|)^k} \
&leq sum_{k=1}^{n} frac{|b|^k}{(n - |a|)^k} \
&leq frac{|b|}{n - |a| - |b|},
end{align*}
which converges to $0$ as $ntoinfty$. Therefore
$$ lim_{ntoinfty} frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n} = 1, $$
and the desired conclusion follows by assuming that we know the limit $lim left(1 + frac{a}{n} right)^n$ exists in $mathbb{C}setminus{0}$.
add a comment |
up vote
4
down vote
accepted
up vote
4
down vote
accepted
Let $a, b in mathbb{C}$. We begin with the identity
$$ frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n}
= left( 1 + frac{b}{n(n + a)} right)^n. $$
Now let $n > |a|+|b| $. Then by the binomial theorem, together with the simple estimate $binom{n}{k} leq n^k$,
begin{align*}
left| frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n} - 1 right|
&= left| sum_{k=1}^{n} binom{n}{k} frac{b^k}{n^k(n + a)^k} right| \
&leq sum_{k=1}^{n} binom{n}{k} frac{|b|^k}{n^k(n - |a|)^k} \
&leq sum_{k=1}^{n} frac{|b|^k}{(n - |a|)^k} \
&leq frac{|b|}{n - |a| - |b|},
end{align*}
which converges to $0$ as $ntoinfty$. Therefore
$$ lim_{ntoinfty} frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n} = 1, $$
and the desired conclusion follows by assuming that we know the limit $lim left(1 + frac{a}{n} right)^n$ exists in $mathbb{C}setminus{0}$.
Let $a, b in mathbb{C}$. We begin with the identity
$$ frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n}
= left( 1 + frac{b}{n(n + a)} right)^n. $$
Now let $n > |a|+|b| $. Then by the binomial theorem, together with the simple estimate $binom{n}{k} leq n^k$,
begin{align*}
left| frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n} - 1 right|
&= left| sum_{k=1}^{n} binom{n}{k} frac{b^k}{n^k(n + a)^k} right| \
&leq sum_{k=1}^{n} binom{n}{k} frac{|b|^k}{n^k(n - |a|)^k} \
&leq sum_{k=1}^{n} frac{|b|^k}{(n - |a|)^k} \
&leq frac{|b|}{n - |a| - |b|},
end{align*}
which converges to $0$ as $ntoinfty$. Therefore
$$ lim_{ntoinfty} frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n} = 1, $$
and the desired conclusion follows by assuming that we know the limit $lim left(1 + frac{a}{n} right)^n$ exists in $mathbb{C}setminus{0}$.
answered Nov 14 at 6:42
Sangchul Lee
89.9k12162262
89.9k12162262
add a comment |
add a comment |
up vote
3
down vote
If you are assuming that the limits exists then you can argue as follows: $(1+frac a n +frac b {n^{2}})^{n}-(1+frac a n )^{n}= sum_{j=0}^{n-1} binom {n} {j}(1+frac a n )^{l}(frac b {n^{2}})^{n-j}$. Note that $|(frac b {n^{2}})^{n-j}| leq frac {|b|} {n^{2}}$ as long as $frac {|b|} {n^{2}} <1$. The remaining sum is bounded by $(2+frac {|a|} n)^{n}$ which is bounded.
add a comment |
up vote
3
down vote
If you are assuming that the limits exists then you can argue as follows: $(1+frac a n +frac b {n^{2}})^{n}-(1+frac a n )^{n}= sum_{j=0}^{n-1} binom {n} {j}(1+frac a n )^{l}(frac b {n^{2}})^{n-j}$. Note that $|(frac b {n^{2}})^{n-j}| leq frac {|b|} {n^{2}}$ as long as $frac {|b|} {n^{2}} <1$. The remaining sum is bounded by $(2+frac {|a|} n)^{n}$ which is bounded.
add a comment |
up vote
3
down vote
up vote
3
down vote
If you are assuming that the limits exists then you can argue as follows: $(1+frac a n +frac b {n^{2}})^{n}-(1+frac a n )^{n}= sum_{j=0}^{n-1} binom {n} {j}(1+frac a n )^{l}(frac b {n^{2}})^{n-j}$. Note that $|(frac b {n^{2}})^{n-j}| leq frac {|b|} {n^{2}}$ as long as $frac {|b|} {n^{2}} <1$. The remaining sum is bounded by $(2+frac {|a|} n)^{n}$ which is bounded.
If you are assuming that the limits exists then you can argue as follows: $(1+frac a n +frac b {n^{2}})^{n}-(1+frac a n )^{n}= sum_{j=0}^{n-1} binom {n} {j}(1+frac a n )^{l}(frac b {n^{2}})^{n-j}$. Note that $|(frac b {n^{2}})^{n-j}| leq frac {|b|} {n^{2}}$ as long as $frac {|b|} {n^{2}} <1$. The remaining sum is bounded by $(2+frac {|a|} n)^{n}$ which is bounded.
answered Nov 14 at 6:39
Kavi Rama Murthy
41.8k31751
41.8k31751
add a comment |
add a comment |
up vote
3
down vote
Let us first assume that $a,bge 0$. (The remaining cases $a<0$ can be treated analogously.)
Using the fact that
$$
s=lim_{ntoinfty}left(1+frac{a}{n}right)^nin (0,infty),
$$
we obtain that
$$
1le frac{left(1+frac{a}{n}+frac{b}{n^2}right)^n}{left(1+frac{a}{n}right)^n}leleft(1+frac{b}{n^2}right)^n= left(Big(1+frac{b}{n^2}Big)^{n^2}right)^{1/n}to 1
$$
and hence
$$
lim_{ntoinfty}frac{left(1+frac{a}{n}+frac{b}{n^2}right)^n}{left(1+frac{a}{n}right)^n}=1.
$$
Yiorgos.Please elaborate After we obtain that : then the second inequality to third where you lose a/n. If you leave it off in the numerator you make the numerator smaller! Thanks.
– Peter Szilas
Nov 14 at 7:19
add a comment |
up vote
3
down vote
Let us first assume that $a,bge 0$. (The remaining cases $a<0$ can be treated analogously.)
Using the fact that
$$
s=lim_{ntoinfty}left(1+frac{a}{n}right)^nin (0,infty),
$$
we obtain that
$$
1le frac{left(1+frac{a}{n}+frac{b}{n^2}right)^n}{left(1+frac{a}{n}right)^n}leleft(1+frac{b}{n^2}right)^n= left(Big(1+frac{b}{n^2}Big)^{n^2}right)^{1/n}to 1
$$
and hence
$$
lim_{ntoinfty}frac{left(1+frac{a}{n}+frac{b}{n^2}right)^n}{left(1+frac{a}{n}right)^n}=1.
$$
Yiorgos.Please elaborate After we obtain that : then the second inequality to third where you lose a/n. If you leave it off in the numerator you make the numerator smaller! Thanks.
– Peter Szilas
Nov 14 at 7:19
add a comment |
up vote
3
down vote
up vote
3
down vote
Let us first assume that $a,bge 0$. (The remaining cases $a<0$ can be treated analogously.)
Using the fact that
$$
s=lim_{ntoinfty}left(1+frac{a}{n}right)^nin (0,infty),
$$
we obtain that
$$
1le frac{left(1+frac{a}{n}+frac{b}{n^2}right)^n}{left(1+frac{a}{n}right)^n}leleft(1+frac{b}{n^2}right)^n= left(Big(1+frac{b}{n^2}Big)^{n^2}right)^{1/n}to 1
$$
and hence
$$
lim_{ntoinfty}frac{left(1+frac{a}{n}+frac{b}{n^2}right)^n}{left(1+frac{a}{n}right)^n}=1.
$$
Let us first assume that $a,bge 0$. (The remaining cases $a<0$ can be treated analogously.)
Using the fact that
$$
s=lim_{ntoinfty}left(1+frac{a}{n}right)^nin (0,infty),
$$
we obtain that
$$
1le frac{left(1+frac{a}{n}+frac{b}{n^2}right)^n}{left(1+frac{a}{n}right)^n}leleft(1+frac{b}{n^2}right)^n= left(Big(1+frac{b}{n^2}Big)^{n^2}right)^{1/n}to 1
$$
and hence
$$
lim_{ntoinfty}frac{left(1+frac{a}{n}+frac{b}{n^2}right)^n}{left(1+frac{a}{n}right)^n}=1.
$$
edited Nov 14 at 6:47
answered Nov 14 at 6:39
Yiorgos S. Smyrlis
61.7k1383161
61.7k1383161
Yiorgos.Please elaborate After we obtain that : then the second inequality to third where you lose a/n. If you leave it off in the numerator you make the numerator smaller! Thanks.
– Peter Szilas
Nov 14 at 7:19
add a comment |
Yiorgos.Please elaborate After we obtain that : then the second inequality to third where you lose a/n. If you leave it off in the numerator you make the numerator smaller! Thanks.
– Peter Szilas
Nov 14 at 7:19
Yiorgos.Please elaborate After we obtain that : then the second inequality to third where you lose a/n. If you leave it off in the numerator you make the numerator smaller! Thanks.
– Peter Szilas
Nov 14 at 7:19
Yiorgos.Please elaborate After we obtain that : then the second inequality to third where you lose a/n. If you leave it off in the numerator you make the numerator smaller! Thanks.
– Peter Szilas
Nov 14 at 7:19
add a comment |
up vote
2
down vote
Let $n^2+an+b=(n+p)(n+q)implies p+q=a, pq=b$
$$lim_{ntoinfty}left(1+dfrac{an+b}{n^2}right)^n=lim_{ntoinfty}left(1+dfrac pnright)^nlim_{ntoinfty}left(1+dfrac qnright)^n=e^{p+q}=e^a$$
Now $left(1+dfrac anright)^n=?$
add a comment |
up vote
2
down vote
Let $n^2+an+b=(n+p)(n+q)implies p+q=a, pq=b$
$$lim_{ntoinfty}left(1+dfrac{an+b}{n^2}right)^n=lim_{ntoinfty}left(1+dfrac pnright)^nlim_{ntoinfty}left(1+dfrac qnright)^n=e^{p+q}=e^a$$
Now $left(1+dfrac anright)^n=?$
add a comment |
up vote
2
down vote
up vote
2
down vote
Let $n^2+an+b=(n+p)(n+q)implies p+q=a, pq=b$
$$lim_{ntoinfty}left(1+dfrac{an+b}{n^2}right)^n=lim_{ntoinfty}left(1+dfrac pnright)^nlim_{ntoinfty}left(1+dfrac qnright)^n=e^{p+q}=e^a$$
Now $left(1+dfrac anright)^n=?$
Let $n^2+an+b=(n+p)(n+q)implies p+q=a, pq=b$
$$lim_{ntoinfty}left(1+dfrac{an+b}{n^2}right)^n=lim_{ntoinfty}left(1+dfrac pnright)^nlim_{ntoinfty}left(1+dfrac qnright)^n=e^{p+q}=e^a$$
Now $left(1+dfrac anright)^n=?$
answered Nov 14 at 6:51
lab bhattacharjee
220k15154271
220k15154271
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2997875%2fprove-lim-n-rightarrow-infty1-fracan-fracbn2n-lim-n-rightarr%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown