Number of solutions in linear equation with 3 variables











up vote
1
down vote

favorite












Is there a way how to determine number of solutions in linear equation like this: $ax + by + cz = d$, where $a,b,c,x,y,z,d$ are non-negative integers and $a,b,c,d$ are known?










share|cite|improve this question




















  • 2




    You can use generating functions and look at the coefficient of $X^d$ in the expansion of $(1+X^a+X^{2a}+X^{3a}+dots)(1+X^b+X^{2b}+dots)(1+X^c+X^{2c}+dots)$
    – JMoravitz
    Nov 14 at 19:50










  • See also this question and similar ones.
    – Dietrich Burde
    Nov 14 at 19:57















up vote
1
down vote

favorite












Is there a way how to determine number of solutions in linear equation like this: $ax + by + cz = d$, where $a,b,c,x,y,z,d$ are non-negative integers and $a,b,c,d$ are known?










share|cite|improve this question




















  • 2




    You can use generating functions and look at the coefficient of $X^d$ in the expansion of $(1+X^a+X^{2a}+X^{3a}+dots)(1+X^b+X^{2b}+dots)(1+X^c+X^{2c}+dots)$
    – JMoravitz
    Nov 14 at 19:50










  • See also this question and similar ones.
    – Dietrich Burde
    Nov 14 at 19:57













up vote
1
down vote

favorite









up vote
1
down vote

favorite











Is there a way how to determine number of solutions in linear equation like this: $ax + by + cz = d$, where $a,b,c,x,y,z,d$ are non-negative integers and $a,b,c,d$ are known?










share|cite|improve this question















Is there a way how to determine number of solutions in linear equation like this: $ax + by + cz = d$, where $a,b,c,x,y,z,d$ are non-negative integers and $a,b,c,d$ are known?







diophantine-equations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 14 at 20:10









Alex D

496218




496218










asked Nov 14 at 19:47









Andreisk

61




61








  • 2




    You can use generating functions and look at the coefficient of $X^d$ in the expansion of $(1+X^a+X^{2a}+X^{3a}+dots)(1+X^b+X^{2b}+dots)(1+X^c+X^{2c}+dots)$
    – JMoravitz
    Nov 14 at 19:50










  • See also this question and similar ones.
    – Dietrich Burde
    Nov 14 at 19:57














  • 2




    You can use generating functions and look at the coefficient of $X^d$ in the expansion of $(1+X^a+X^{2a}+X^{3a}+dots)(1+X^b+X^{2b}+dots)(1+X^c+X^{2c}+dots)$
    – JMoravitz
    Nov 14 at 19:50










  • See also this question and similar ones.
    – Dietrich Burde
    Nov 14 at 19:57








2




2




You can use generating functions and look at the coefficient of $X^d$ in the expansion of $(1+X^a+X^{2a}+X^{3a}+dots)(1+X^b+X^{2b}+dots)(1+X^c+X^{2c}+dots)$
– JMoravitz
Nov 14 at 19:50




You can use generating functions and look at the coefficient of $X^d$ in the expansion of $(1+X^a+X^{2a}+X^{3a}+dots)(1+X^b+X^{2b}+dots)(1+X^c+X^{2c}+dots)$
– JMoravitz
Nov 14 at 19:50












See also this question and similar ones.
– Dietrich Burde
Nov 14 at 19:57




See also this question and similar ones.
– Dietrich Burde
Nov 14 at 19:57










1 Answer
1






active

oldest

votes

















up vote
0
down vote













Above equation shown below:



$ax + by + cz = d$ -------$(1)$



For (a, b, c, d)= (3, 2, 5, 32), equation $(1)$ has parametric solution given below:



$x=(1-v)$



$y=(-5u+9v+87)$



$z=(2u-3v-29)$



For $(u,v)$ = $(15, 0)$ we get,



$(x, y, z)$ = $(1, 12, 1)$






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














     

    draft saved


    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2998741%2fnumber-of-solutions-in-linear-equation-with-3-variables%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote













    Above equation shown below:



    $ax + by + cz = d$ -------$(1)$



    For (a, b, c, d)= (3, 2, 5, 32), equation $(1)$ has parametric solution given below:



    $x=(1-v)$



    $y=(-5u+9v+87)$



    $z=(2u-3v-29)$



    For $(u,v)$ = $(15, 0)$ we get,



    $(x, y, z)$ = $(1, 12, 1)$






    share|cite|improve this answer

























      up vote
      0
      down vote













      Above equation shown below:



      $ax + by + cz = d$ -------$(1)$



      For (a, b, c, d)= (3, 2, 5, 32), equation $(1)$ has parametric solution given below:



      $x=(1-v)$



      $y=(-5u+9v+87)$



      $z=(2u-3v-29)$



      For $(u,v)$ = $(15, 0)$ we get,



      $(x, y, z)$ = $(1, 12, 1)$






      share|cite|improve this answer























        up vote
        0
        down vote










        up vote
        0
        down vote









        Above equation shown below:



        $ax + by + cz = d$ -------$(1)$



        For (a, b, c, d)= (3, 2, 5, 32), equation $(1)$ has parametric solution given below:



        $x=(1-v)$



        $y=(-5u+9v+87)$



        $z=(2u-3v-29)$



        For $(u,v)$ = $(15, 0)$ we get,



        $(x, y, z)$ = $(1, 12, 1)$






        share|cite|improve this answer












        Above equation shown below:



        $ax + by + cz = d$ -------$(1)$



        For (a, b, c, d)= (3, 2, 5, 32), equation $(1)$ has parametric solution given below:



        $x=(1-v)$



        $y=(-5u+9v+87)$



        $z=(2u-3v-29)$



        For $(u,v)$ = $(15, 0)$ we get,



        $(x, y, z)$ = $(1, 12, 1)$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 15 at 16:15









        Sam

        1




        1






























             

            draft saved


            draft discarded



















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2998741%2fnumber-of-solutions-in-linear-equation-with-3-variables%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How to change which sound is reproduced for terminal bell?

            Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

            Can I use Tabulator js library in my java Spring + Thymeleaf project?