Adding a Grand Total to a Pandas Pivot Table
up vote
1
down vote
favorite
I'm stuck. In my code below I can successfully create the subtotaled pivot table I'm looking for but cannot produce a grand total.
[The following code leverages the arcgis module; this simply converts a table (in this case an MSSQL table) to a NumPy array]
import numpy as np
import pandas as pd
import arcpy
table = "\\filserver\MAP_PROJECTS\LV_WEB\SDE_CONNECTIONS\LV_NEXUS.sde\LV_NEXUS.DATAOWNER.NORTHEAST\LV_NEXUS.DATAOWNER.NE_HARVEST_OPS"
HUID = "669-NMTC-139"
whereClause = """ "LV_HARVEST_UNIT_ID" = '{0}' """.format(HUID)
tableArray = arcpy.da.TableToNumPyArray(table, ['STAND_NUMB', 'SUPER_TYPE','STRATA', 'OS_TYPE', 'SILV_PRES', 'ACRES'], where_clause = whereClause)
df = pd.DataFrame(tableArray)
report = df.groupby(['SUPER_TYPE']).apply(lambda sub_df: sub_df.pivot_table(index=['STRATA', 'OS_TYPE', 'STAND_NUMB', 'SILV_PRES'], values=['ACRES'],aggfunc=np.sum, margins=True,margins_name= 'TOTAL'))
np.round(report,1)
This provides a total for each 'SUPER_TYPE' group, but I cannot create a grand total. I tried the following:
grandtotal = np.round(np.sum(report),1)
grandtotal.name = 'Grand Total'
report.append(grandtotal)
and that just creates a terrible mess. It appends the grand total but destroys the formatting of my data frame.
Dataframe pasted below not sure how to keep the formatting
STAND_NUMB SUPER_TYPE STRATA OS_TYPE SILV_PRES ACRES
0 3113 SH SH3B SH3B OSR/2SS/SCC 0.612748
1 3608 HW H3AB H3B OSR/2SS/SCC 12.936038
2 3105 HW H3AB H3B OSR/2SS/SCC 35.199887
3 3607 HS HS3B HS3B OSR/2SS/SCC 27.683348
4 3601 HW H3AB H3A OSR/2SS/SCC 11.941338
5 3603 HW H4B H4B OSR/2SS/SCC 25.307238
6 3092 HS HS3B HS3B OSR/2SS/SCC 17.331220
7 3600 HW H4B H4B OSR/2SS/SCC 13.443112
8 3596 HW H3AB H3B OSR/2SS/SCC 12.375962
9 3597 HW H3AB H3A OSR/2SS/SCC 41.639072
10 3591 SW S4BC S4A OSR/2SS/SCC 11.355869
11 3594 HS HS3B HS3B OSR/2SS/SCC 31.747874
12 3586 HW H3AB H3B OSR/2SS/SCC 19.437834
13 3588 HW H3AB H3A OSR/2SS/SCC 18.129702
14 3587 HS HS3B HS3B OSR/2SS/SCC 13.788853
15 3585 HW H3AB H3A OSR/2SS/SCC 25.775322
16 3582 SH SH3B SH3B OSR/2SS/SCC 11.026199
17 3581 HS HS3B HS3B OSR/2SS/SCC 16.634195
18 3589 HW H3AB H3A OSR/2SS/SCC 54.684222
19 3579 SH SH3B SH3B OSR/2SS/SCC 17.313354
20 3578 HW H4C_H2C H4C OSR/2SS/SCC 30.255013
21 3576 HW H3C H3C OSR/2SS/SCC 11.310230
22 3573 HW H3AB H3A OSR/2SS/SCC 30.369559
23 3575 HW H4C_H2C H4C OSR/2SS/SCC 53.088547
24 3569 HW H4A H4A OSR/2SS/SCC 12.809001
25 3567 HW H4B H4B OSR/2SS/SCC 24.026682
26 3568 HW H3AB H3B OSR/2SS/SCC 57.934207
27 3565 HW H4B H4B OSR/2SS/SCC 33.545768
28 3605 HW H3AB H3B OSR/2SS/SCC 74.424945
29 3580 HS HS3B HS3B OSR/2SS/SCC 8.062028
30 3571 HW H3AB H3A OSR/2SS/SCC 30.718121
31 3562 HW H3AB H3B OSR/2SS/SCC 22.774026
32 3110 SW S3C S3C OSR/2SS/SCC 2.240600
33 3120.1 SH SH3B SH3B OSR/2SS/SCC 3.726728
python pandas pivot-table
|
show 13 more comments
up vote
1
down vote
favorite
I'm stuck. In my code below I can successfully create the subtotaled pivot table I'm looking for but cannot produce a grand total.
[The following code leverages the arcgis module; this simply converts a table (in this case an MSSQL table) to a NumPy array]
import numpy as np
import pandas as pd
import arcpy
table = "\\filserver\MAP_PROJECTS\LV_WEB\SDE_CONNECTIONS\LV_NEXUS.sde\LV_NEXUS.DATAOWNER.NORTHEAST\LV_NEXUS.DATAOWNER.NE_HARVEST_OPS"
HUID = "669-NMTC-139"
whereClause = """ "LV_HARVEST_UNIT_ID" = '{0}' """.format(HUID)
tableArray = arcpy.da.TableToNumPyArray(table, ['STAND_NUMB', 'SUPER_TYPE','STRATA', 'OS_TYPE', 'SILV_PRES', 'ACRES'], where_clause = whereClause)
df = pd.DataFrame(tableArray)
report = df.groupby(['SUPER_TYPE']).apply(lambda sub_df: sub_df.pivot_table(index=['STRATA', 'OS_TYPE', 'STAND_NUMB', 'SILV_PRES'], values=['ACRES'],aggfunc=np.sum, margins=True,margins_name= 'TOTAL'))
np.round(report,1)
This provides a total for each 'SUPER_TYPE' group, but I cannot create a grand total. I tried the following:
grandtotal = np.round(np.sum(report),1)
grandtotal.name = 'Grand Total'
report.append(grandtotal)
and that just creates a terrible mess. It appends the grand total but destroys the formatting of my data frame.
Dataframe pasted below not sure how to keep the formatting
STAND_NUMB SUPER_TYPE STRATA OS_TYPE SILV_PRES ACRES
0 3113 SH SH3B SH3B OSR/2SS/SCC 0.612748
1 3608 HW H3AB H3B OSR/2SS/SCC 12.936038
2 3105 HW H3AB H3B OSR/2SS/SCC 35.199887
3 3607 HS HS3B HS3B OSR/2SS/SCC 27.683348
4 3601 HW H3AB H3A OSR/2SS/SCC 11.941338
5 3603 HW H4B H4B OSR/2SS/SCC 25.307238
6 3092 HS HS3B HS3B OSR/2SS/SCC 17.331220
7 3600 HW H4B H4B OSR/2SS/SCC 13.443112
8 3596 HW H3AB H3B OSR/2SS/SCC 12.375962
9 3597 HW H3AB H3A OSR/2SS/SCC 41.639072
10 3591 SW S4BC S4A OSR/2SS/SCC 11.355869
11 3594 HS HS3B HS3B OSR/2SS/SCC 31.747874
12 3586 HW H3AB H3B OSR/2SS/SCC 19.437834
13 3588 HW H3AB H3A OSR/2SS/SCC 18.129702
14 3587 HS HS3B HS3B OSR/2SS/SCC 13.788853
15 3585 HW H3AB H3A OSR/2SS/SCC 25.775322
16 3582 SH SH3B SH3B OSR/2SS/SCC 11.026199
17 3581 HS HS3B HS3B OSR/2SS/SCC 16.634195
18 3589 HW H3AB H3A OSR/2SS/SCC 54.684222
19 3579 SH SH3B SH3B OSR/2SS/SCC 17.313354
20 3578 HW H4C_H2C H4C OSR/2SS/SCC 30.255013
21 3576 HW H3C H3C OSR/2SS/SCC 11.310230
22 3573 HW H3AB H3A OSR/2SS/SCC 30.369559
23 3575 HW H4C_H2C H4C OSR/2SS/SCC 53.088547
24 3569 HW H4A H4A OSR/2SS/SCC 12.809001
25 3567 HW H4B H4B OSR/2SS/SCC 24.026682
26 3568 HW H3AB H3B OSR/2SS/SCC 57.934207
27 3565 HW H4B H4B OSR/2SS/SCC 33.545768
28 3605 HW H3AB H3B OSR/2SS/SCC 74.424945
29 3580 HS HS3B HS3B OSR/2SS/SCC 8.062028
30 3571 HW H3AB H3A OSR/2SS/SCC 30.718121
31 3562 HW H3AB H3B OSR/2SS/SCC 22.774026
32 3110 SW S3C S3C OSR/2SS/SCC 2.240600
33 3120.1 SH SH3B SH3B OSR/2SS/SCC 3.726728
python pandas pivot-table
1
can you do something like this:df.loc[('', 'TOTAL','','',''), :] = df['ACRES'].sum()
– Chris
5 hours ago
1
Have a look at the solutions to Pivot table subtotals in Pandas
– ALollz
5 hours ago
1
@ALollz I've actually been trying to make that work for the last 30 minutes or so but no luck.
– Clickinaway
4 hours ago
1
@Clickinaway I am not getting an error on my test data you should be able to dodf.loc[('', 'Grand Total','','',''), :] = df[df.index.get_level_values(1) != 'TOTAL'].sum()
– Chris
4 hours ago
1
Please set up a reproducible example including allimport
lines and data we can run in our empty Python environments.
– Parfait
4 hours ago
|
show 13 more comments
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I'm stuck. In my code below I can successfully create the subtotaled pivot table I'm looking for but cannot produce a grand total.
[The following code leverages the arcgis module; this simply converts a table (in this case an MSSQL table) to a NumPy array]
import numpy as np
import pandas as pd
import arcpy
table = "\\filserver\MAP_PROJECTS\LV_WEB\SDE_CONNECTIONS\LV_NEXUS.sde\LV_NEXUS.DATAOWNER.NORTHEAST\LV_NEXUS.DATAOWNER.NE_HARVEST_OPS"
HUID = "669-NMTC-139"
whereClause = """ "LV_HARVEST_UNIT_ID" = '{0}' """.format(HUID)
tableArray = arcpy.da.TableToNumPyArray(table, ['STAND_NUMB', 'SUPER_TYPE','STRATA', 'OS_TYPE', 'SILV_PRES', 'ACRES'], where_clause = whereClause)
df = pd.DataFrame(tableArray)
report = df.groupby(['SUPER_TYPE']).apply(lambda sub_df: sub_df.pivot_table(index=['STRATA', 'OS_TYPE', 'STAND_NUMB', 'SILV_PRES'], values=['ACRES'],aggfunc=np.sum, margins=True,margins_name= 'TOTAL'))
np.round(report,1)
This provides a total for each 'SUPER_TYPE' group, but I cannot create a grand total. I tried the following:
grandtotal = np.round(np.sum(report),1)
grandtotal.name = 'Grand Total'
report.append(grandtotal)
and that just creates a terrible mess. It appends the grand total but destroys the formatting of my data frame.
Dataframe pasted below not sure how to keep the formatting
STAND_NUMB SUPER_TYPE STRATA OS_TYPE SILV_PRES ACRES
0 3113 SH SH3B SH3B OSR/2SS/SCC 0.612748
1 3608 HW H3AB H3B OSR/2SS/SCC 12.936038
2 3105 HW H3AB H3B OSR/2SS/SCC 35.199887
3 3607 HS HS3B HS3B OSR/2SS/SCC 27.683348
4 3601 HW H3AB H3A OSR/2SS/SCC 11.941338
5 3603 HW H4B H4B OSR/2SS/SCC 25.307238
6 3092 HS HS3B HS3B OSR/2SS/SCC 17.331220
7 3600 HW H4B H4B OSR/2SS/SCC 13.443112
8 3596 HW H3AB H3B OSR/2SS/SCC 12.375962
9 3597 HW H3AB H3A OSR/2SS/SCC 41.639072
10 3591 SW S4BC S4A OSR/2SS/SCC 11.355869
11 3594 HS HS3B HS3B OSR/2SS/SCC 31.747874
12 3586 HW H3AB H3B OSR/2SS/SCC 19.437834
13 3588 HW H3AB H3A OSR/2SS/SCC 18.129702
14 3587 HS HS3B HS3B OSR/2SS/SCC 13.788853
15 3585 HW H3AB H3A OSR/2SS/SCC 25.775322
16 3582 SH SH3B SH3B OSR/2SS/SCC 11.026199
17 3581 HS HS3B HS3B OSR/2SS/SCC 16.634195
18 3589 HW H3AB H3A OSR/2SS/SCC 54.684222
19 3579 SH SH3B SH3B OSR/2SS/SCC 17.313354
20 3578 HW H4C_H2C H4C OSR/2SS/SCC 30.255013
21 3576 HW H3C H3C OSR/2SS/SCC 11.310230
22 3573 HW H3AB H3A OSR/2SS/SCC 30.369559
23 3575 HW H4C_H2C H4C OSR/2SS/SCC 53.088547
24 3569 HW H4A H4A OSR/2SS/SCC 12.809001
25 3567 HW H4B H4B OSR/2SS/SCC 24.026682
26 3568 HW H3AB H3B OSR/2SS/SCC 57.934207
27 3565 HW H4B H4B OSR/2SS/SCC 33.545768
28 3605 HW H3AB H3B OSR/2SS/SCC 74.424945
29 3580 HS HS3B HS3B OSR/2SS/SCC 8.062028
30 3571 HW H3AB H3A OSR/2SS/SCC 30.718121
31 3562 HW H3AB H3B OSR/2SS/SCC 22.774026
32 3110 SW S3C S3C OSR/2SS/SCC 2.240600
33 3120.1 SH SH3B SH3B OSR/2SS/SCC 3.726728
python pandas pivot-table
I'm stuck. In my code below I can successfully create the subtotaled pivot table I'm looking for but cannot produce a grand total.
[The following code leverages the arcgis module; this simply converts a table (in this case an MSSQL table) to a NumPy array]
import numpy as np
import pandas as pd
import arcpy
table = "\\filserver\MAP_PROJECTS\LV_WEB\SDE_CONNECTIONS\LV_NEXUS.sde\LV_NEXUS.DATAOWNER.NORTHEAST\LV_NEXUS.DATAOWNER.NE_HARVEST_OPS"
HUID = "669-NMTC-139"
whereClause = """ "LV_HARVEST_UNIT_ID" = '{0}' """.format(HUID)
tableArray = arcpy.da.TableToNumPyArray(table, ['STAND_NUMB', 'SUPER_TYPE','STRATA', 'OS_TYPE', 'SILV_PRES', 'ACRES'], where_clause = whereClause)
df = pd.DataFrame(tableArray)
report = df.groupby(['SUPER_TYPE']).apply(lambda sub_df: sub_df.pivot_table(index=['STRATA', 'OS_TYPE', 'STAND_NUMB', 'SILV_PRES'], values=['ACRES'],aggfunc=np.sum, margins=True,margins_name= 'TOTAL'))
np.round(report,1)
This provides a total for each 'SUPER_TYPE' group, but I cannot create a grand total. I tried the following:
grandtotal = np.round(np.sum(report),1)
grandtotal.name = 'Grand Total'
report.append(grandtotal)
and that just creates a terrible mess. It appends the grand total but destroys the formatting of my data frame.
Dataframe pasted below not sure how to keep the formatting
STAND_NUMB SUPER_TYPE STRATA OS_TYPE SILV_PRES ACRES
0 3113 SH SH3B SH3B OSR/2SS/SCC 0.612748
1 3608 HW H3AB H3B OSR/2SS/SCC 12.936038
2 3105 HW H3AB H3B OSR/2SS/SCC 35.199887
3 3607 HS HS3B HS3B OSR/2SS/SCC 27.683348
4 3601 HW H3AB H3A OSR/2SS/SCC 11.941338
5 3603 HW H4B H4B OSR/2SS/SCC 25.307238
6 3092 HS HS3B HS3B OSR/2SS/SCC 17.331220
7 3600 HW H4B H4B OSR/2SS/SCC 13.443112
8 3596 HW H3AB H3B OSR/2SS/SCC 12.375962
9 3597 HW H3AB H3A OSR/2SS/SCC 41.639072
10 3591 SW S4BC S4A OSR/2SS/SCC 11.355869
11 3594 HS HS3B HS3B OSR/2SS/SCC 31.747874
12 3586 HW H3AB H3B OSR/2SS/SCC 19.437834
13 3588 HW H3AB H3A OSR/2SS/SCC 18.129702
14 3587 HS HS3B HS3B OSR/2SS/SCC 13.788853
15 3585 HW H3AB H3A OSR/2SS/SCC 25.775322
16 3582 SH SH3B SH3B OSR/2SS/SCC 11.026199
17 3581 HS HS3B HS3B OSR/2SS/SCC 16.634195
18 3589 HW H3AB H3A OSR/2SS/SCC 54.684222
19 3579 SH SH3B SH3B OSR/2SS/SCC 17.313354
20 3578 HW H4C_H2C H4C OSR/2SS/SCC 30.255013
21 3576 HW H3C H3C OSR/2SS/SCC 11.310230
22 3573 HW H3AB H3A OSR/2SS/SCC 30.369559
23 3575 HW H4C_H2C H4C OSR/2SS/SCC 53.088547
24 3569 HW H4A H4A OSR/2SS/SCC 12.809001
25 3567 HW H4B H4B OSR/2SS/SCC 24.026682
26 3568 HW H3AB H3B OSR/2SS/SCC 57.934207
27 3565 HW H4B H4B OSR/2SS/SCC 33.545768
28 3605 HW H3AB H3B OSR/2SS/SCC 74.424945
29 3580 HS HS3B HS3B OSR/2SS/SCC 8.062028
30 3571 HW H3AB H3A OSR/2SS/SCC 30.718121
31 3562 HW H3AB H3B OSR/2SS/SCC 22.774026
32 3110 SW S3C S3C OSR/2SS/SCC 2.240600
33 3120.1 SH SH3B SH3B OSR/2SS/SCC 3.726728
python pandas pivot-table
python pandas pivot-table
edited 2 hours ago
Parfait
47.6k84065
47.6k84065
asked 5 hours ago
Clickinaway
12015
12015
1
can you do something like this:df.loc[('', 'TOTAL','','',''), :] = df['ACRES'].sum()
– Chris
5 hours ago
1
Have a look at the solutions to Pivot table subtotals in Pandas
– ALollz
5 hours ago
1
@ALollz I've actually been trying to make that work for the last 30 minutes or so but no luck.
– Clickinaway
4 hours ago
1
@Clickinaway I am not getting an error on my test data you should be able to dodf.loc[('', 'Grand Total','','',''), :] = df[df.index.get_level_values(1) != 'TOTAL'].sum()
– Chris
4 hours ago
1
Please set up a reproducible example including allimport
lines and data we can run in our empty Python environments.
– Parfait
4 hours ago
|
show 13 more comments
1
can you do something like this:df.loc[('', 'TOTAL','','',''), :] = df['ACRES'].sum()
– Chris
5 hours ago
1
Have a look at the solutions to Pivot table subtotals in Pandas
– ALollz
5 hours ago
1
@ALollz I've actually been trying to make that work for the last 30 minutes or so but no luck.
– Clickinaway
4 hours ago
1
@Clickinaway I am not getting an error on my test data you should be able to dodf.loc[('', 'Grand Total','','',''), :] = df[df.index.get_level_values(1) != 'TOTAL'].sum()
– Chris
4 hours ago
1
Please set up a reproducible example including allimport
lines and data we can run in our empty Python environments.
– Parfait
4 hours ago
1
1
can you do something like this:
df.loc[('', 'TOTAL','','',''), :] = df['ACRES'].sum()
– Chris
5 hours ago
can you do something like this:
df.loc[('', 'TOTAL','','',''), :] = df['ACRES'].sum()
– Chris
5 hours ago
1
1
Have a look at the solutions to Pivot table subtotals in Pandas
– ALollz
5 hours ago
Have a look at the solutions to Pivot table subtotals in Pandas
– ALollz
5 hours ago
1
1
@ALollz I've actually been trying to make that work for the last 30 minutes or so but no luck.
– Clickinaway
4 hours ago
@ALollz I've actually been trying to make that work for the last 30 minutes or so but no luck.
– Clickinaway
4 hours ago
1
1
@Clickinaway I am not getting an error on my test data you should be able to do
df.loc[('', 'Grand Total','','',''), :] = df[df.index.get_level_values(1) != 'TOTAL'].sum()
– Chris
4 hours ago
@Clickinaway I am not getting an error on my test data you should be able to do
df.loc[('', 'Grand Total','','',''), :] = df[df.index.get_level_values(1) != 'TOTAL'].sum()
– Chris
4 hours ago
1
1
Please set up a reproducible example including all
import
lines and data we can run in our empty Python environments.– Parfait
4 hours ago
Please set up a reproducible example including all
import
lines and data we can run in our empty Python environments.– Parfait
4 hours ago
|
show 13 more comments
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
Based on your example that is posted:
# read your data from clipboard
df = pd.read_clipboard()
# run your pivot_table code from above
report = df.groupby(['SUPER_TYPE']).apply(lambda sub_df: sub_df.pivot_table(index=['STRATA', 'OS_TYPE', 'STAND_NUMB', 'SILV_PRES'], values=['ACRES'],aggfunc=np.sum, margins=True,margins_name= 'TOTAL'))
# this is creating a new row at level(1) called grand total
# set it equal to the sum of ACRES where level(1) != 'Total' so you are not counting the calculated totals in the total sum
report.loc[('', 'Grand Total','','',''), :] = report[report.index.get_level_values(1) != 'TOTAL'].sum()
report
ACRES
SUPER_TYPE STRATA OS_TYPE STAND_NUMB SILV_PRES
HS HS3B HS3B 3092.0 OSR/2SS/SCC 17.3
3580.0 OSR/2SS/SCC 8.1
3581.0 OSR/2SS/SCC 16.6
3587.0 OSR/2SS/SCC 13.8
3594.0 OSR/2SS/SCC 31.7
3607.0 OSR/2SS/SCC 27.7
TOTAL 115.2
HW H3AB H3A 3571.0 OSR/2SS/SCC 30.7
3573.0 OSR/2SS/SCC 30.4
3585.0 OSR/2SS/SCC 25.8
3588.0 OSR/2SS/SCC 18.1
3589.0 OSR/2SS/SCC 54.7
3597.0 OSR/2SS/SCC 41.6
3601.0 OSR/2SS/SCC 11.9
. . .
Grand Total 813.6
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Based on your example that is posted:
# read your data from clipboard
df = pd.read_clipboard()
# run your pivot_table code from above
report = df.groupby(['SUPER_TYPE']).apply(lambda sub_df: sub_df.pivot_table(index=['STRATA', 'OS_TYPE', 'STAND_NUMB', 'SILV_PRES'], values=['ACRES'],aggfunc=np.sum, margins=True,margins_name= 'TOTAL'))
# this is creating a new row at level(1) called grand total
# set it equal to the sum of ACRES where level(1) != 'Total' so you are not counting the calculated totals in the total sum
report.loc[('', 'Grand Total','','',''), :] = report[report.index.get_level_values(1) != 'TOTAL'].sum()
report
ACRES
SUPER_TYPE STRATA OS_TYPE STAND_NUMB SILV_PRES
HS HS3B HS3B 3092.0 OSR/2SS/SCC 17.3
3580.0 OSR/2SS/SCC 8.1
3581.0 OSR/2SS/SCC 16.6
3587.0 OSR/2SS/SCC 13.8
3594.0 OSR/2SS/SCC 31.7
3607.0 OSR/2SS/SCC 27.7
TOTAL 115.2
HW H3AB H3A 3571.0 OSR/2SS/SCC 30.7
3573.0 OSR/2SS/SCC 30.4
3585.0 OSR/2SS/SCC 25.8
3588.0 OSR/2SS/SCC 18.1
3589.0 OSR/2SS/SCC 54.7
3597.0 OSR/2SS/SCC 41.6
3601.0 OSR/2SS/SCC 11.9
. . .
Grand Total 813.6
add a comment |
up vote
1
down vote
accepted
Based on your example that is posted:
# read your data from clipboard
df = pd.read_clipboard()
# run your pivot_table code from above
report = df.groupby(['SUPER_TYPE']).apply(lambda sub_df: sub_df.pivot_table(index=['STRATA', 'OS_TYPE', 'STAND_NUMB', 'SILV_PRES'], values=['ACRES'],aggfunc=np.sum, margins=True,margins_name= 'TOTAL'))
# this is creating a new row at level(1) called grand total
# set it equal to the sum of ACRES where level(1) != 'Total' so you are not counting the calculated totals in the total sum
report.loc[('', 'Grand Total','','',''), :] = report[report.index.get_level_values(1) != 'TOTAL'].sum()
report
ACRES
SUPER_TYPE STRATA OS_TYPE STAND_NUMB SILV_PRES
HS HS3B HS3B 3092.0 OSR/2SS/SCC 17.3
3580.0 OSR/2SS/SCC 8.1
3581.0 OSR/2SS/SCC 16.6
3587.0 OSR/2SS/SCC 13.8
3594.0 OSR/2SS/SCC 31.7
3607.0 OSR/2SS/SCC 27.7
TOTAL 115.2
HW H3AB H3A 3571.0 OSR/2SS/SCC 30.7
3573.0 OSR/2SS/SCC 30.4
3585.0 OSR/2SS/SCC 25.8
3588.0 OSR/2SS/SCC 18.1
3589.0 OSR/2SS/SCC 54.7
3597.0 OSR/2SS/SCC 41.6
3601.0 OSR/2SS/SCC 11.9
. . .
Grand Total 813.6
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Based on your example that is posted:
# read your data from clipboard
df = pd.read_clipboard()
# run your pivot_table code from above
report = df.groupby(['SUPER_TYPE']).apply(lambda sub_df: sub_df.pivot_table(index=['STRATA', 'OS_TYPE', 'STAND_NUMB', 'SILV_PRES'], values=['ACRES'],aggfunc=np.sum, margins=True,margins_name= 'TOTAL'))
# this is creating a new row at level(1) called grand total
# set it equal to the sum of ACRES where level(1) != 'Total' so you are not counting the calculated totals in the total sum
report.loc[('', 'Grand Total','','',''), :] = report[report.index.get_level_values(1) != 'TOTAL'].sum()
report
ACRES
SUPER_TYPE STRATA OS_TYPE STAND_NUMB SILV_PRES
HS HS3B HS3B 3092.0 OSR/2SS/SCC 17.3
3580.0 OSR/2SS/SCC 8.1
3581.0 OSR/2SS/SCC 16.6
3587.0 OSR/2SS/SCC 13.8
3594.0 OSR/2SS/SCC 31.7
3607.0 OSR/2SS/SCC 27.7
TOTAL 115.2
HW H3AB H3A 3571.0 OSR/2SS/SCC 30.7
3573.0 OSR/2SS/SCC 30.4
3585.0 OSR/2SS/SCC 25.8
3588.0 OSR/2SS/SCC 18.1
3589.0 OSR/2SS/SCC 54.7
3597.0 OSR/2SS/SCC 41.6
3601.0 OSR/2SS/SCC 11.9
. . .
Grand Total 813.6
Based on your example that is posted:
# read your data from clipboard
df = pd.read_clipboard()
# run your pivot_table code from above
report = df.groupby(['SUPER_TYPE']).apply(lambda sub_df: sub_df.pivot_table(index=['STRATA', 'OS_TYPE', 'STAND_NUMB', 'SILV_PRES'], values=['ACRES'],aggfunc=np.sum, margins=True,margins_name= 'TOTAL'))
# this is creating a new row at level(1) called grand total
# set it equal to the sum of ACRES where level(1) != 'Total' so you are not counting the calculated totals in the total sum
report.loc[('', 'Grand Total','','',''), :] = report[report.index.get_level_values(1) != 'TOTAL'].sum()
report
ACRES
SUPER_TYPE STRATA OS_TYPE STAND_NUMB SILV_PRES
HS HS3B HS3B 3092.0 OSR/2SS/SCC 17.3
3580.0 OSR/2SS/SCC 8.1
3581.0 OSR/2SS/SCC 16.6
3587.0 OSR/2SS/SCC 13.8
3594.0 OSR/2SS/SCC 31.7
3607.0 OSR/2SS/SCC 27.7
TOTAL 115.2
HW H3AB H3A 3571.0 OSR/2SS/SCC 30.7
3573.0 OSR/2SS/SCC 30.4
3585.0 OSR/2SS/SCC 25.8
3588.0 OSR/2SS/SCC 18.1
3589.0 OSR/2SS/SCC 54.7
3597.0 OSR/2SS/SCC 41.6
3601.0 OSR/2SS/SCC 11.9
. . .
Grand Total 813.6
answered 1 hour ago
Chris
1,161110
1,161110
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53266032%2fadding-a-grand-total-to-a-pandas-pivot-table%23new-answer', 'question_page');
}
);
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
can you do something like this:
df.loc[('', 'TOTAL','','',''), :] = df['ACRES'].sum()
– Chris
5 hours ago
1
Have a look at the solutions to Pivot table subtotals in Pandas
– ALollz
5 hours ago
1
@ALollz I've actually been trying to make that work for the last 30 minutes or so but no luck.
– Clickinaway
4 hours ago
1
@Clickinaway I am not getting an error on my test data you should be able to do
df.loc[('', 'Grand Total','','',''), :] = df[df.index.get_level_values(1) != 'TOTAL'].sum()
– Chris
4 hours ago
1
Please set up a reproducible example including all
import
lines and data we can run in our empty Python environments.– Parfait
4 hours ago