Verifying Green's theorem for a function
$begingroup$
Let
$G = { (x,y) in mathbb{R}^2 : x^2+4y^2 >1, x^2+y^2 < 4 } $
$ int_G x^2+y^2 d(x,y) $
I want to verify Green's Theorem :
$ oint_{ partial G } f n ds = int_G operatorname{div}f, dx $
I solved for he righthand side:
$ int_G operatorname{div}f dx = frac{25}{32} pi $,
just by calculating the Integral for the circle and the ellipse separately and subtract.
For the lefthand side, I need to find $ f: G rightarrow mathbb{R^2} $ so that $ operatorname{div}f = x^2+y^2 $
that can be $ f=( frac{1}{3} x^3 , frac{1}{3} y^3 ) $
now my question is, how to proceed? :0
Do I have to split the region?
Is $ n= frac{1}{ sqrt{ (frac{1}{3} x^3 )^2+ ( frac{1}{3}y^3 )^2}} begin{pmatrix} frac{1}{3} x^3 \ frac{1}{3} y^3 end{pmatrix} $ ?
Looking forward to any help! :-)
real-analysis integration gaussian-integral greens-theorem
$endgroup$
add a comment |
$begingroup$
Let
$G = { (x,y) in mathbb{R}^2 : x^2+4y^2 >1, x^2+y^2 < 4 } $
$ int_G x^2+y^2 d(x,y) $
I want to verify Green's Theorem :
$ oint_{ partial G } f n ds = int_G operatorname{div}f, dx $
I solved for he righthand side:
$ int_G operatorname{div}f dx = frac{25}{32} pi $,
just by calculating the Integral for the circle and the ellipse separately and subtract.
For the lefthand side, I need to find $ f: G rightarrow mathbb{R^2} $ so that $ operatorname{div}f = x^2+y^2 $
that can be $ f=( frac{1}{3} x^3 , frac{1}{3} y^3 ) $
now my question is, how to proceed? :0
Do I have to split the region?
Is $ n= frac{1}{ sqrt{ (frac{1}{3} x^3 )^2+ ( frac{1}{3}y^3 )^2}} begin{pmatrix} frac{1}{3} x^3 \ frac{1}{3} y^3 end{pmatrix} $ ?
Looking forward to any help! :-)
real-analysis integration gaussian-integral greens-theorem
$endgroup$
$begingroup$
Is $x^2+y^2$ already the divergence, or are you getting the divergence from that some how?
$endgroup$
– TurlocTheRed
Nov 28 '18 at 19:55
$begingroup$
yes, it is $ div f = x^2+y^2 $
$endgroup$
– wondering1123
Nov 28 '18 at 20:04
add a comment |
$begingroup$
Let
$G = { (x,y) in mathbb{R}^2 : x^2+4y^2 >1, x^2+y^2 < 4 } $
$ int_G x^2+y^2 d(x,y) $
I want to verify Green's Theorem :
$ oint_{ partial G } f n ds = int_G operatorname{div}f, dx $
I solved for he righthand side:
$ int_G operatorname{div}f dx = frac{25}{32} pi $,
just by calculating the Integral for the circle and the ellipse separately and subtract.
For the lefthand side, I need to find $ f: G rightarrow mathbb{R^2} $ so that $ operatorname{div}f = x^2+y^2 $
that can be $ f=( frac{1}{3} x^3 , frac{1}{3} y^3 ) $
now my question is, how to proceed? :0
Do I have to split the region?
Is $ n= frac{1}{ sqrt{ (frac{1}{3} x^3 )^2+ ( frac{1}{3}y^3 )^2}} begin{pmatrix} frac{1}{3} x^3 \ frac{1}{3} y^3 end{pmatrix} $ ?
Looking forward to any help! :-)
real-analysis integration gaussian-integral greens-theorem
$endgroup$
Let
$G = { (x,y) in mathbb{R}^2 : x^2+4y^2 >1, x^2+y^2 < 4 } $
$ int_G x^2+y^2 d(x,y) $
I want to verify Green's Theorem :
$ oint_{ partial G } f n ds = int_G operatorname{div}f, dx $
I solved for he righthand side:
$ int_G operatorname{div}f dx = frac{25}{32} pi $,
just by calculating the Integral for the circle and the ellipse separately and subtract.
For the lefthand side, I need to find $ f: G rightarrow mathbb{R^2} $ so that $ operatorname{div}f = x^2+y^2 $
that can be $ f=( frac{1}{3} x^3 , frac{1}{3} y^3 ) $
now my question is, how to proceed? :0
Do I have to split the region?
Is $ n= frac{1}{ sqrt{ (frac{1}{3} x^3 )^2+ ( frac{1}{3}y^3 )^2}} begin{pmatrix} frac{1}{3} x^3 \ frac{1}{3} y^3 end{pmatrix} $ ?
Looking forward to any help! :-)
real-analysis integration gaussian-integral greens-theorem
real-analysis integration gaussian-integral greens-theorem
edited Nov 28 '18 at 16:56
Bernard
120k740113
120k740113
asked Nov 28 '18 at 16:47
wondering1123wondering1123
14411
14411
$begingroup$
Is $x^2+y^2$ already the divergence, or are you getting the divergence from that some how?
$endgroup$
– TurlocTheRed
Nov 28 '18 at 19:55
$begingroup$
yes, it is $ div f = x^2+y^2 $
$endgroup$
– wondering1123
Nov 28 '18 at 20:04
add a comment |
$begingroup$
Is $x^2+y^2$ already the divergence, or are you getting the divergence from that some how?
$endgroup$
– TurlocTheRed
Nov 28 '18 at 19:55
$begingroup$
yes, it is $ div f = x^2+y^2 $
$endgroup$
– wondering1123
Nov 28 '18 at 20:04
$begingroup$
Is $x^2+y^2$ already the divergence, or are you getting the divergence from that some how?
$endgroup$
– TurlocTheRed
Nov 28 '18 at 19:55
$begingroup$
Is $x^2+y^2$ already the divergence, or are you getting the divergence from that some how?
$endgroup$
– TurlocTheRed
Nov 28 '18 at 19:55
$begingroup$
yes, it is $ div f = x^2+y^2 $
$endgroup$
– wondering1123
Nov 28 '18 at 20:04
$begingroup$
yes, it is $ div f = x^2+y^2 $
$endgroup$
– wondering1123
Nov 28 '18 at 20:04
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$mathbf r$ is not normal to the ellipse. If the boundary is parametrized as $mathbf r(t) = (x(t), y(t))$, then $mathbf n(t) = (y'(t), -x'(t))$ is normal to the boundary and
$$int_{partial D} mathbf F cdot frac {mathbf n} {|mathbf n|} ,ds =
int_a^b mathbf F cdot frac {mathbf n} {|mathbf n|} ,|mathbf r'| ,dt =
int_a^b mathbf F cdot mathbf n ,dt.$$
We have $mathbf F = (x^3/3, y^3/3), ,mathbf r_1(t) = (cos t, 1/2 sin t), ,mathbf r_2(t) = (2 cos t, 2 sin t)$, thus
$$begin{aligned}
&begin{aligned}
int_{partial D} mathbf F cdot mathbf n ,dt =
&int_0^{2 pi} left( frac {cos^3 t} 3, frac {sin^3 t} {24} right) cdot
left( -frac {cos t} 2, -sin t right) dt + {} \
&int_0^{2 pi} left( frac {8 cos^3 t} 3, frac {8 sin^3 t} {3} right) cdot
(2 cos t, 2 sin t) ,dt,
end{aligned} \
&int_D nabla cdot mathbf F ,dS =
int_0^{2 pi} int_{1/sqrt{cos^2 t + 4 sin^2 t}}^2 ,r^3 dr dt.
end{aligned}$$
Both are equal to $251 pi/32$.
$endgroup$
add a comment |
$begingroup$
$f=x^2+y^2=r^2=f=nabla cdot (r^3/4 hat{r})$
So $vec{F}=frac{r^3}{4}hat{r}$
The normal to a "surface" in 2d is the unit vector perpendicular to the tangent line.
The curves here can be parameterized as
$x=acos{theta}$
$y=bsin{theta}$
Where for the ellipse $a=1$, $b=1/2$. For the circle $a=b=2$
The tangent line vector is $-asin{theta}hat{i}+bcos{theta}hat{j}$
So the normal line vector is $bcos{theta}hat{i}+asin{theta}vec{j}$
So the unit normal
$hat{n}= frac{<bcos{theta}, asin{theta}>}{sqrt{b^2cos^2{theta}+a^2sin^2{theta}}}$
$vec{r}=<acos{theta}, bsin{theta}>$
So $vec{F}cdot hat{n}dA =frac{r^2}{4}frac{ab}{sqrt{b^2cos^2{theta}+a^2sin^2{theta}}} dtheta $
You probably want to run that integral clockwise around the ellipse and counter clockwise around the circle. Integrate from 0 to $2pi$
$endgroup$
$begingroup$
The norm of $n$ doesn't contain an $a b$ term.
$endgroup$
– Maxim
Dec 2 '18 at 9:14
$begingroup$
Correct. I took r from r^3 and multiplied it with $hat{r}$, then dotted that with $hat{n}$ producing the result.
$endgroup$
– TurlocTheRed
Dec 3 '18 at 14:44
$begingroup$
I'm saying that if $mathbf n = (b cos theta, a sin theta)$, then $|mathbf n| = sqrt{b^2 cos^2 theta + a^2 sin^2 theta}$. Also, the divergence of $r^3/3 ,hat {mathbf r}$ is not $r^2$, it's $4 r^2/3$. And what is $dA$? Area element?
$endgroup$
– Maxim
Dec 3 '18 at 16:07
$begingroup$
$nabla cdot vec{A}$ in cylindrical coordinates = $frac{partial A_r}{partial r}+frac{partial A_theta}{rpartial theta}+frac{partial A_z}{partial z}$ $vec{F}=r^3/3hat{r}$ So: $nabla cdot vec{F}=frac{partial(r^3/3)}{partial r}$ $nabla cdot vec{F}=r^2$
$endgroup$
– TurlocTheRed
Dec 4 '18 at 15:58
$begingroup$
I asee what you mean about the norm. Corrected! Thanks!
$endgroup$
– TurlocTheRed
Dec 4 '18 at 16:00
|
show 1 more comment
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017365%2fverifying-greens-theorem-for-a-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$mathbf r$ is not normal to the ellipse. If the boundary is parametrized as $mathbf r(t) = (x(t), y(t))$, then $mathbf n(t) = (y'(t), -x'(t))$ is normal to the boundary and
$$int_{partial D} mathbf F cdot frac {mathbf n} {|mathbf n|} ,ds =
int_a^b mathbf F cdot frac {mathbf n} {|mathbf n|} ,|mathbf r'| ,dt =
int_a^b mathbf F cdot mathbf n ,dt.$$
We have $mathbf F = (x^3/3, y^3/3), ,mathbf r_1(t) = (cos t, 1/2 sin t), ,mathbf r_2(t) = (2 cos t, 2 sin t)$, thus
$$begin{aligned}
&begin{aligned}
int_{partial D} mathbf F cdot mathbf n ,dt =
&int_0^{2 pi} left( frac {cos^3 t} 3, frac {sin^3 t} {24} right) cdot
left( -frac {cos t} 2, -sin t right) dt + {} \
&int_0^{2 pi} left( frac {8 cos^3 t} 3, frac {8 sin^3 t} {3} right) cdot
(2 cos t, 2 sin t) ,dt,
end{aligned} \
&int_D nabla cdot mathbf F ,dS =
int_0^{2 pi} int_{1/sqrt{cos^2 t + 4 sin^2 t}}^2 ,r^3 dr dt.
end{aligned}$$
Both are equal to $251 pi/32$.
$endgroup$
add a comment |
$begingroup$
$mathbf r$ is not normal to the ellipse. If the boundary is parametrized as $mathbf r(t) = (x(t), y(t))$, then $mathbf n(t) = (y'(t), -x'(t))$ is normal to the boundary and
$$int_{partial D} mathbf F cdot frac {mathbf n} {|mathbf n|} ,ds =
int_a^b mathbf F cdot frac {mathbf n} {|mathbf n|} ,|mathbf r'| ,dt =
int_a^b mathbf F cdot mathbf n ,dt.$$
We have $mathbf F = (x^3/3, y^3/3), ,mathbf r_1(t) = (cos t, 1/2 sin t), ,mathbf r_2(t) = (2 cos t, 2 sin t)$, thus
$$begin{aligned}
&begin{aligned}
int_{partial D} mathbf F cdot mathbf n ,dt =
&int_0^{2 pi} left( frac {cos^3 t} 3, frac {sin^3 t} {24} right) cdot
left( -frac {cos t} 2, -sin t right) dt + {} \
&int_0^{2 pi} left( frac {8 cos^3 t} 3, frac {8 sin^3 t} {3} right) cdot
(2 cos t, 2 sin t) ,dt,
end{aligned} \
&int_D nabla cdot mathbf F ,dS =
int_0^{2 pi} int_{1/sqrt{cos^2 t + 4 sin^2 t}}^2 ,r^3 dr dt.
end{aligned}$$
Both are equal to $251 pi/32$.
$endgroup$
add a comment |
$begingroup$
$mathbf r$ is not normal to the ellipse. If the boundary is parametrized as $mathbf r(t) = (x(t), y(t))$, then $mathbf n(t) = (y'(t), -x'(t))$ is normal to the boundary and
$$int_{partial D} mathbf F cdot frac {mathbf n} {|mathbf n|} ,ds =
int_a^b mathbf F cdot frac {mathbf n} {|mathbf n|} ,|mathbf r'| ,dt =
int_a^b mathbf F cdot mathbf n ,dt.$$
We have $mathbf F = (x^3/3, y^3/3), ,mathbf r_1(t) = (cos t, 1/2 sin t), ,mathbf r_2(t) = (2 cos t, 2 sin t)$, thus
$$begin{aligned}
&begin{aligned}
int_{partial D} mathbf F cdot mathbf n ,dt =
&int_0^{2 pi} left( frac {cos^3 t} 3, frac {sin^3 t} {24} right) cdot
left( -frac {cos t} 2, -sin t right) dt + {} \
&int_0^{2 pi} left( frac {8 cos^3 t} 3, frac {8 sin^3 t} {3} right) cdot
(2 cos t, 2 sin t) ,dt,
end{aligned} \
&int_D nabla cdot mathbf F ,dS =
int_0^{2 pi} int_{1/sqrt{cos^2 t + 4 sin^2 t}}^2 ,r^3 dr dt.
end{aligned}$$
Both are equal to $251 pi/32$.
$endgroup$
$mathbf r$ is not normal to the ellipse. If the boundary is parametrized as $mathbf r(t) = (x(t), y(t))$, then $mathbf n(t) = (y'(t), -x'(t))$ is normal to the boundary and
$$int_{partial D} mathbf F cdot frac {mathbf n} {|mathbf n|} ,ds =
int_a^b mathbf F cdot frac {mathbf n} {|mathbf n|} ,|mathbf r'| ,dt =
int_a^b mathbf F cdot mathbf n ,dt.$$
We have $mathbf F = (x^3/3, y^3/3), ,mathbf r_1(t) = (cos t, 1/2 sin t), ,mathbf r_2(t) = (2 cos t, 2 sin t)$, thus
$$begin{aligned}
&begin{aligned}
int_{partial D} mathbf F cdot mathbf n ,dt =
&int_0^{2 pi} left( frac {cos^3 t} 3, frac {sin^3 t} {24} right) cdot
left( -frac {cos t} 2, -sin t right) dt + {} \
&int_0^{2 pi} left( frac {8 cos^3 t} 3, frac {8 sin^3 t} {3} right) cdot
(2 cos t, 2 sin t) ,dt,
end{aligned} \
&int_D nabla cdot mathbf F ,dS =
int_0^{2 pi} int_{1/sqrt{cos^2 t + 4 sin^2 t}}^2 ,r^3 dr dt.
end{aligned}$$
Both are equal to $251 pi/32$.
answered Dec 2 '18 at 9:09
MaximMaxim
5,1631219
5,1631219
add a comment |
add a comment |
$begingroup$
$f=x^2+y^2=r^2=f=nabla cdot (r^3/4 hat{r})$
So $vec{F}=frac{r^3}{4}hat{r}$
The normal to a "surface" in 2d is the unit vector perpendicular to the tangent line.
The curves here can be parameterized as
$x=acos{theta}$
$y=bsin{theta}$
Where for the ellipse $a=1$, $b=1/2$. For the circle $a=b=2$
The tangent line vector is $-asin{theta}hat{i}+bcos{theta}hat{j}$
So the normal line vector is $bcos{theta}hat{i}+asin{theta}vec{j}$
So the unit normal
$hat{n}= frac{<bcos{theta}, asin{theta}>}{sqrt{b^2cos^2{theta}+a^2sin^2{theta}}}$
$vec{r}=<acos{theta}, bsin{theta}>$
So $vec{F}cdot hat{n}dA =frac{r^2}{4}frac{ab}{sqrt{b^2cos^2{theta}+a^2sin^2{theta}}} dtheta $
You probably want to run that integral clockwise around the ellipse and counter clockwise around the circle. Integrate from 0 to $2pi$
$endgroup$
$begingroup$
The norm of $n$ doesn't contain an $a b$ term.
$endgroup$
– Maxim
Dec 2 '18 at 9:14
$begingroup$
Correct. I took r from r^3 and multiplied it with $hat{r}$, then dotted that with $hat{n}$ producing the result.
$endgroup$
– TurlocTheRed
Dec 3 '18 at 14:44
$begingroup$
I'm saying that if $mathbf n = (b cos theta, a sin theta)$, then $|mathbf n| = sqrt{b^2 cos^2 theta + a^2 sin^2 theta}$. Also, the divergence of $r^3/3 ,hat {mathbf r}$ is not $r^2$, it's $4 r^2/3$. And what is $dA$? Area element?
$endgroup$
– Maxim
Dec 3 '18 at 16:07
$begingroup$
$nabla cdot vec{A}$ in cylindrical coordinates = $frac{partial A_r}{partial r}+frac{partial A_theta}{rpartial theta}+frac{partial A_z}{partial z}$ $vec{F}=r^3/3hat{r}$ So: $nabla cdot vec{F}=frac{partial(r^3/3)}{partial r}$ $nabla cdot vec{F}=r^2$
$endgroup$
– TurlocTheRed
Dec 4 '18 at 15:58
$begingroup$
I asee what you mean about the norm. Corrected! Thanks!
$endgroup$
– TurlocTheRed
Dec 4 '18 at 16:00
|
show 1 more comment
$begingroup$
$f=x^2+y^2=r^2=f=nabla cdot (r^3/4 hat{r})$
So $vec{F}=frac{r^3}{4}hat{r}$
The normal to a "surface" in 2d is the unit vector perpendicular to the tangent line.
The curves here can be parameterized as
$x=acos{theta}$
$y=bsin{theta}$
Where for the ellipse $a=1$, $b=1/2$. For the circle $a=b=2$
The tangent line vector is $-asin{theta}hat{i}+bcos{theta}hat{j}$
So the normal line vector is $bcos{theta}hat{i}+asin{theta}vec{j}$
So the unit normal
$hat{n}= frac{<bcos{theta}, asin{theta}>}{sqrt{b^2cos^2{theta}+a^2sin^2{theta}}}$
$vec{r}=<acos{theta}, bsin{theta}>$
So $vec{F}cdot hat{n}dA =frac{r^2}{4}frac{ab}{sqrt{b^2cos^2{theta}+a^2sin^2{theta}}} dtheta $
You probably want to run that integral clockwise around the ellipse and counter clockwise around the circle. Integrate from 0 to $2pi$
$endgroup$
$begingroup$
The norm of $n$ doesn't contain an $a b$ term.
$endgroup$
– Maxim
Dec 2 '18 at 9:14
$begingroup$
Correct. I took r from r^3 and multiplied it with $hat{r}$, then dotted that with $hat{n}$ producing the result.
$endgroup$
– TurlocTheRed
Dec 3 '18 at 14:44
$begingroup$
I'm saying that if $mathbf n = (b cos theta, a sin theta)$, then $|mathbf n| = sqrt{b^2 cos^2 theta + a^2 sin^2 theta}$. Also, the divergence of $r^3/3 ,hat {mathbf r}$ is not $r^2$, it's $4 r^2/3$. And what is $dA$? Area element?
$endgroup$
– Maxim
Dec 3 '18 at 16:07
$begingroup$
$nabla cdot vec{A}$ in cylindrical coordinates = $frac{partial A_r}{partial r}+frac{partial A_theta}{rpartial theta}+frac{partial A_z}{partial z}$ $vec{F}=r^3/3hat{r}$ So: $nabla cdot vec{F}=frac{partial(r^3/3)}{partial r}$ $nabla cdot vec{F}=r^2$
$endgroup$
– TurlocTheRed
Dec 4 '18 at 15:58
$begingroup$
I asee what you mean about the norm. Corrected! Thanks!
$endgroup$
– TurlocTheRed
Dec 4 '18 at 16:00
|
show 1 more comment
$begingroup$
$f=x^2+y^2=r^2=f=nabla cdot (r^3/4 hat{r})$
So $vec{F}=frac{r^3}{4}hat{r}$
The normal to a "surface" in 2d is the unit vector perpendicular to the tangent line.
The curves here can be parameterized as
$x=acos{theta}$
$y=bsin{theta}$
Where for the ellipse $a=1$, $b=1/2$. For the circle $a=b=2$
The tangent line vector is $-asin{theta}hat{i}+bcos{theta}hat{j}$
So the normal line vector is $bcos{theta}hat{i}+asin{theta}vec{j}$
So the unit normal
$hat{n}= frac{<bcos{theta}, asin{theta}>}{sqrt{b^2cos^2{theta}+a^2sin^2{theta}}}$
$vec{r}=<acos{theta}, bsin{theta}>$
So $vec{F}cdot hat{n}dA =frac{r^2}{4}frac{ab}{sqrt{b^2cos^2{theta}+a^2sin^2{theta}}} dtheta $
You probably want to run that integral clockwise around the ellipse and counter clockwise around the circle. Integrate from 0 to $2pi$
$endgroup$
$f=x^2+y^2=r^2=f=nabla cdot (r^3/4 hat{r})$
So $vec{F}=frac{r^3}{4}hat{r}$
The normal to a "surface" in 2d is the unit vector perpendicular to the tangent line.
The curves here can be parameterized as
$x=acos{theta}$
$y=bsin{theta}$
Where for the ellipse $a=1$, $b=1/2$. For the circle $a=b=2$
The tangent line vector is $-asin{theta}hat{i}+bcos{theta}hat{j}$
So the normal line vector is $bcos{theta}hat{i}+asin{theta}vec{j}$
So the unit normal
$hat{n}= frac{<bcos{theta}, asin{theta}>}{sqrt{b^2cos^2{theta}+a^2sin^2{theta}}}$
$vec{r}=<acos{theta}, bsin{theta}>$
So $vec{F}cdot hat{n}dA =frac{r^2}{4}frac{ab}{sqrt{b^2cos^2{theta}+a^2sin^2{theta}}} dtheta $
You probably want to run that integral clockwise around the ellipse and counter clockwise around the circle. Integrate from 0 to $2pi$
edited Dec 4 '18 at 16:15
answered Nov 28 '18 at 20:12
TurlocTheRedTurlocTheRed
856311
856311
$begingroup$
The norm of $n$ doesn't contain an $a b$ term.
$endgroup$
– Maxim
Dec 2 '18 at 9:14
$begingroup$
Correct. I took r from r^3 and multiplied it with $hat{r}$, then dotted that with $hat{n}$ producing the result.
$endgroup$
– TurlocTheRed
Dec 3 '18 at 14:44
$begingroup$
I'm saying that if $mathbf n = (b cos theta, a sin theta)$, then $|mathbf n| = sqrt{b^2 cos^2 theta + a^2 sin^2 theta}$. Also, the divergence of $r^3/3 ,hat {mathbf r}$ is not $r^2$, it's $4 r^2/3$. And what is $dA$? Area element?
$endgroup$
– Maxim
Dec 3 '18 at 16:07
$begingroup$
$nabla cdot vec{A}$ in cylindrical coordinates = $frac{partial A_r}{partial r}+frac{partial A_theta}{rpartial theta}+frac{partial A_z}{partial z}$ $vec{F}=r^3/3hat{r}$ So: $nabla cdot vec{F}=frac{partial(r^3/3)}{partial r}$ $nabla cdot vec{F}=r^2$
$endgroup$
– TurlocTheRed
Dec 4 '18 at 15:58
$begingroup$
I asee what you mean about the norm. Corrected! Thanks!
$endgroup$
– TurlocTheRed
Dec 4 '18 at 16:00
|
show 1 more comment
$begingroup$
The norm of $n$ doesn't contain an $a b$ term.
$endgroup$
– Maxim
Dec 2 '18 at 9:14
$begingroup$
Correct. I took r from r^3 and multiplied it with $hat{r}$, then dotted that with $hat{n}$ producing the result.
$endgroup$
– TurlocTheRed
Dec 3 '18 at 14:44
$begingroup$
I'm saying that if $mathbf n = (b cos theta, a sin theta)$, then $|mathbf n| = sqrt{b^2 cos^2 theta + a^2 sin^2 theta}$. Also, the divergence of $r^3/3 ,hat {mathbf r}$ is not $r^2$, it's $4 r^2/3$. And what is $dA$? Area element?
$endgroup$
– Maxim
Dec 3 '18 at 16:07
$begingroup$
$nabla cdot vec{A}$ in cylindrical coordinates = $frac{partial A_r}{partial r}+frac{partial A_theta}{rpartial theta}+frac{partial A_z}{partial z}$ $vec{F}=r^3/3hat{r}$ So: $nabla cdot vec{F}=frac{partial(r^3/3)}{partial r}$ $nabla cdot vec{F}=r^2$
$endgroup$
– TurlocTheRed
Dec 4 '18 at 15:58
$begingroup$
I asee what you mean about the norm. Corrected! Thanks!
$endgroup$
– TurlocTheRed
Dec 4 '18 at 16:00
$begingroup$
The norm of $n$ doesn't contain an $a b$ term.
$endgroup$
– Maxim
Dec 2 '18 at 9:14
$begingroup$
The norm of $n$ doesn't contain an $a b$ term.
$endgroup$
– Maxim
Dec 2 '18 at 9:14
$begingroup$
Correct. I took r from r^3 and multiplied it with $hat{r}$, then dotted that with $hat{n}$ producing the result.
$endgroup$
– TurlocTheRed
Dec 3 '18 at 14:44
$begingroup$
Correct. I took r from r^3 and multiplied it with $hat{r}$, then dotted that with $hat{n}$ producing the result.
$endgroup$
– TurlocTheRed
Dec 3 '18 at 14:44
$begingroup$
I'm saying that if $mathbf n = (b cos theta, a sin theta)$, then $|mathbf n| = sqrt{b^2 cos^2 theta + a^2 sin^2 theta}$. Also, the divergence of $r^3/3 ,hat {mathbf r}$ is not $r^2$, it's $4 r^2/3$. And what is $dA$? Area element?
$endgroup$
– Maxim
Dec 3 '18 at 16:07
$begingroup$
I'm saying that if $mathbf n = (b cos theta, a sin theta)$, then $|mathbf n| = sqrt{b^2 cos^2 theta + a^2 sin^2 theta}$. Also, the divergence of $r^3/3 ,hat {mathbf r}$ is not $r^2$, it's $4 r^2/3$. And what is $dA$? Area element?
$endgroup$
– Maxim
Dec 3 '18 at 16:07
$begingroup$
$nabla cdot vec{A}$ in cylindrical coordinates = $frac{partial A_r}{partial r}+frac{partial A_theta}{rpartial theta}+frac{partial A_z}{partial z}$ $vec{F}=r^3/3hat{r}$ So: $nabla cdot vec{F}=frac{partial(r^3/3)}{partial r}$ $nabla cdot vec{F}=r^2$
$endgroup$
– TurlocTheRed
Dec 4 '18 at 15:58
$begingroup$
$nabla cdot vec{A}$ in cylindrical coordinates = $frac{partial A_r}{partial r}+frac{partial A_theta}{rpartial theta}+frac{partial A_z}{partial z}$ $vec{F}=r^3/3hat{r}$ So: $nabla cdot vec{F}=frac{partial(r^3/3)}{partial r}$ $nabla cdot vec{F}=r^2$
$endgroup$
– TurlocTheRed
Dec 4 '18 at 15:58
$begingroup$
I asee what you mean about the norm. Corrected! Thanks!
$endgroup$
– TurlocTheRed
Dec 4 '18 at 16:00
$begingroup$
I asee what you mean about the norm. Corrected! Thanks!
$endgroup$
– TurlocTheRed
Dec 4 '18 at 16:00
|
show 1 more comment
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017365%2fverifying-greens-theorem-for-a-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Is $x^2+y^2$ already the divergence, or are you getting the divergence from that some how?
$endgroup$
– TurlocTheRed
Nov 28 '18 at 19:55
$begingroup$
yes, it is $ div f = x^2+y^2 $
$endgroup$
– wondering1123
Nov 28 '18 at 20:04