Subadditive lemma for $a_{m+n+2}leq a_n+a_m+g(m)$
up vote
0
down vote
favorite
I have a sequence $a_n$ such that $a_{m+n+2}leq a_n+a_m+g(m)$ where $lim_{m to infty}frac{g(m)}{m}=0$ and $g(m)$ is a positive incresing function.
I need to show that $lim_{n to infty}frac{a_n}{n} =inf{frac{a_n}{n}}$.
Here's what I've came up so far:
Let there be a fixed $k>2$. For all $n>2$ we have that $n = mk+r+2$ with $0leq r <k$ so
$a_n = a_{mk+r+2}leq a_{mk}+a_r+g(r)leq a_{(m-1)k}+a_{k-2}+g(k-2)+a_r+g(r)leq ...leq$
$leq a_k+(m-1)a_{k-2}+(m-1)g(k-2)+a_r+g(r)$.
Now we divide everything by n.
$$frac{a_n}{n}leq frac{a_k}{n}+frac{(m-1)}{n}a_{k-2}+frac{(m-1)}{n}g(k-2)+frac{a_r+g(r)}{n}$$
taking $n to infty$
$limsup frac{a_n}{n}leq frac{a_{k-2}}{k}+frac{g(k-2)}{k} forall k>2$ . In particular $limsup frac{a_n}{n}leq infleft{frac{a_{k-2}}{k}+frac{g(k-2)}{k}right} = infleft{frac{a_{k-2}}{k}right} $
assuming $infleft{frac{a_{k-2}}{k}+frac{g(k-2)}{k}right} not in left{a_1+g(1) , frac{a(2)}{2}+frac{g(2)}{2}right}$ (which is true in the case I need, so even if this is not true in every case, for me it's enough) (last equality comes from the fact that $g(n) = o(n)$)
Now, if I had that $infleft{frac{a_{k-2}}{k}right}leq infleft{frac{a_{k}}{k}right}$ then I've proven what I wanted, as I'd have that $limsupleq inf implies limsup=liminf = lim$ but I can't reach this result.
Any hints on how to proceed or any other ideas for this proof altogether?
real-analysis sequences-and-series analysis convergence
add a comment |
up vote
0
down vote
favorite
I have a sequence $a_n$ such that $a_{m+n+2}leq a_n+a_m+g(m)$ where $lim_{m to infty}frac{g(m)}{m}=0$ and $g(m)$ is a positive incresing function.
I need to show that $lim_{n to infty}frac{a_n}{n} =inf{frac{a_n}{n}}$.
Here's what I've came up so far:
Let there be a fixed $k>2$. For all $n>2$ we have that $n = mk+r+2$ with $0leq r <k$ so
$a_n = a_{mk+r+2}leq a_{mk}+a_r+g(r)leq a_{(m-1)k}+a_{k-2}+g(k-2)+a_r+g(r)leq ...leq$
$leq a_k+(m-1)a_{k-2}+(m-1)g(k-2)+a_r+g(r)$.
Now we divide everything by n.
$$frac{a_n}{n}leq frac{a_k}{n}+frac{(m-1)}{n}a_{k-2}+frac{(m-1)}{n}g(k-2)+frac{a_r+g(r)}{n}$$
taking $n to infty$
$limsup frac{a_n}{n}leq frac{a_{k-2}}{k}+frac{g(k-2)}{k} forall k>2$ . In particular $limsup frac{a_n}{n}leq infleft{frac{a_{k-2}}{k}+frac{g(k-2)}{k}right} = infleft{frac{a_{k-2}}{k}right} $
assuming $infleft{frac{a_{k-2}}{k}+frac{g(k-2)}{k}right} not in left{a_1+g(1) , frac{a(2)}{2}+frac{g(2)}{2}right}$ (which is true in the case I need, so even if this is not true in every case, for me it's enough) (last equality comes from the fact that $g(n) = o(n)$)
Now, if I had that $infleft{frac{a_{k-2}}{k}right}leq infleft{frac{a_{k}}{k}right}$ then I've proven what I wanted, as I'd have that $limsupleq inf implies limsup=liminf = lim$ but I can't reach this result.
Any hints on how to proceed or any other ideas for this proof altogether?
real-analysis sequences-and-series analysis convergence
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I have a sequence $a_n$ such that $a_{m+n+2}leq a_n+a_m+g(m)$ where $lim_{m to infty}frac{g(m)}{m}=0$ and $g(m)$ is a positive incresing function.
I need to show that $lim_{n to infty}frac{a_n}{n} =inf{frac{a_n}{n}}$.
Here's what I've came up so far:
Let there be a fixed $k>2$. For all $n>2$ we have that $n = mk+r+2$ with $0leq r <k$ so
$a_n = a_{mk+r+2}leq a_{mk}+a_r+g(r)leq a_{(m-1)k}+a_{k-2}+g(k-2)+a_r+g(r)leq ...leq$
$leq a_k+(m-1)a_{k-2}+(m-1)g(k-2)+a_r+g(r)$.
Now we divide everything by n.
$$frac{a_n}{n}leq frac{a_k}{n}+frac{(m-1)}{n}a_{k-2}+frac{(m-1)}{n}g(k-2)+frac{a_r+g(r)}{n}$$
taking $n to infty$
$limsup frac{a_n}{n}leq frac{a_{k-2}}{k}+frac{g(k-2)}{k} forall k>2$ . In particular $limsup frac{a_n}{n}leq infleft{frac{a_{k-2}}{k}+frac{g(k-2)}{k}right} = infleft{frac{a_{k-2}}{k}right} $
assuming $infleft{frac{a_{k-2}}{k}+frac{g(k-2)}{k}right} not in left{a_1+g(1) , frac{a(2)}{2}+frac{g(2)}{2}right}$ (which is true in the case I need, so even if this is not true in every case, for me it's enough) (last equality comes from the fact that $g(n) = o(n)$)
Now, if I had that $infleft{frac{a_{k-2}}{k}right}leq infleft{frac{a_{k}}{k}right}$ then I've proven what I wanted, as I'd have that $limsupleq inf implies limsup=liminf = lim$ but I can't reach this result.
Any hints on how to proceed or any other ideas for this proof altogether?
real-analysis sequences-and-series analysis convergence
I have a sequence $a_n$ such that $a_{m+n+2}leq a_n+a_m+g(m)$ where $lim_{m to infty}frac{g(m)}{m}=0$ and $g(m)$ is a positive incresing function.
I need to show that $lim_{n to infty}frac{a_n}{n} =inf{frac{a_n}{n}}$.
Here's what I've came up so far:
Let there be a fixed $k>2$. For all $n>2$ we have that $n = mk+r+2$ with $0leq r <k$ so
$a_n = a_{mk+r+2}leq a_{mk}+a_r+g(r)leq a_{(m-1)k}+a_{k-2}+g(k-2)+a_r+g(r)leq ...leq$
$leq a_k+(m-1)a_{k-2}+(m-1)g(k-2)+a_r+g(r)$.
Now we divide everything by n.
$$frac{a_n}{n}leq frac{a_k}{n}+frac{(m-1)}{n}a_{k-2}+frac{(m-1)}{n}g(k-2)+frac{a_r+g(r)}{n}$$
taking $n to infty$
$limsup frac{a_n}{n}leq frac{a_{k-2}}{k}+frac{g(k-2)}{k} forall k>2$ . In particular $limsup frac{a_n}{n}leq infleft{frac{a_{k-2}}{k}+frac{g(k-2)}{k}right} = infleft{frac{a_{k-2}}{k}right} $
assuming $infleft{frac{a_{k-2}}{k}+frac{g(k-2)}{k}right} not in left{a_1+g(1) , frac{a(2)}{2}+frac{g(2)}{2}right}$ (which is true in the case I need, so even if this is not true in every case, for me it's enough) (last equality comes from the fact that $g(n) = o(n)$)
Now, if I had that $infleft{frac{a_{k-2}}{k}right}leq infleft{frac{a_{k}}{k}right}$ then I've proven what I wanted, as I'd have that $limsupleq inf implies limsup=liminf = lim$ but I can't reach this result.
Any hints on how to proceed or any other ideas for this proof altogether?
real-analysis sequences-and-series analysis convergence
real-analysis sequences-and-series analysis convergence
asked Nov 19 at 18:01
Matheus barros castro
375110
375110
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005270%2fsubadditive-lemma-for-a-mn2-leq-a-na-mgm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005270%2fsubadditive-lemma-for-a-mn2-leq-a-na-mgm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown