Independence between random vector and event












1












$begingroup$



Let $U_1, U_2$ and $U_3$ be three independent uniformly $(0, 1)$ random variables.



Let $X_1,...,X_n$ be a sequence of independent uniformly $(0, 1)$ random variables.



Consider that $X_i$ and $U_j$ are independents, for all $i,j$.



Show that the event ${U_1 > U_2 > U_3}$ is independent of the $(U_{(3)},X_{(1)})$, where $U_{(3)} = max{U_1,U_2,U_3}$ and $X_{(1)} = min{X_1,...,X_n}$.




I have no idea to start. How'd be the definition of independence between events and random variables?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    As for your last question: the rv. $X$ is independent of an event $A$ if all events $B$ defined in terms of $X$ are independent of $A$, such as $B=[Xlt t]$, or $B=[Xin S]$, or most generally, for all $B$ in the sigma field $mathcal{F}(X)$ generated by $X$
    $endgroup$
    – kimchi lover
    Nov 28 '18 at 22:40








  • 1




    $begingroup$
    You also need independence between $U_k$ and$X_j$ for all indices.
    $endgroup$
    – herb steinberg
    Nov 28 '18 at 22:46
















1












$begingroup$



Let $U_1, U_2$ and $U_3$ be three independent uniformly $(0, 1)$ random variables.



Let $X_1,...,X_n$ be a sequence of independent uniformly $(0, 1)$ random variables.



Consider that $X_i$ and $U_j$ are independents, for all $i,j$.



Show that the event ${U_1 > U_2 > U_3}$ is independent of the $(U_{(3)},X_{(1)})$, where $U_{(3)} = max{U_1,U_2,U_3}$ and $X_{(1)} = min{X_1,...,X_n}$.




I have no idea to start. How'd be the definition of independence between events and random variables?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    As for your last question: the rv. $X$ is independent of an event $A$ if all events $B$ defined in terms of $X$ are independent of $A$, such as $B=[Xlt t]$, or $B=[Xin S]$, or most generally, for all $B$ in the sigma field $mathcal{F}(X)$ generated by $X$
    $endgroup$
    – kimchi lover
    Nov 28 '18 at 22:40








  • 1




    $begingroup$
    You also need independence between $U_k$ and$X_j$ for all indices.
    $endgroup$
    – herb steinberg
    Nov 28 '18 at 22:46














1












1








1


2



$begingroup$



Let $U_1, U_2$ and $U_3$ be three independent uniformly $(0, 1)$ random variables.



Let $X_1,...,X_n$ be a sequence of independent uniformly $(0, 1)$ random variables.



Consider that $X_i$ and $U_j$ are independents, for all $i,j$.



Show that the event ${U_1 > U_2 > U_3}$ is independent of the $(U_{(3)},X_{(1)})$, where $U_{(3)} = max{U_1,U_2,U_3}$ and $X_{(1)} = min{X_1,...,X_n}$.




I have no idea to start. How'd be the definition of independence between events and random variables?










share|cite|improve this question











$endgroup$





Let $U_1, U_2$ and $U_3$ be three independent uniformly $(0, 1)$ random variables.



Let $X_1,...,X_n$ be a sequence of independent uniformly $(0, 1)$ random variables.



Consider that $X_i$ and $U_j$ are independents, for all $i,j$.



Show that the event ${U_1 > U_2 > U_3}$ is independent of the $(U_{(3)},X_{(1)})$, where $U_{(3)} = max{U_1,U_2,U_3}$ and $X_{(1)} = min{X_1,...,X_n}$.




I have no idea to start. How'd be the definition of independence between events and random variables?







probability probability-theory probability-distributions independence uniform-distribution






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 29 '18 at 10:00









Davide Giraudo

126k16150261




126k16150261










asked Nov 28 '18 at 21:18









Pedro SalgadoPedro Salgado

735




735








  • 1




    $begingroup$
    As for your last question: the rv. $X$ is independent of an event $A$ if all events $B$ defined in terms of $X$ are independent of $A$, such as $B=[Xlt t]$, or $B=[Xin S]$, or most generally, for all $B$ in the sigma field $mathcal{F}(X)$ generated by $X$
    $endgroup$
    – kimchi lover
    Nov 28 '18 at 22:40








  • 1




    $begingroup$
    You also need independence between $U_k$ and$X_j$ for all indices.
    $endgroup$
    – herb steinberg
    Nov 28 '18 at 22:46














  • 1




    $begingroup$
    As for your last question: the rv. $X$ is independent of an event $A$ if all events $B$ defined in terms of $X$ are independent of $A$, such as $B=[Xlt t]$, or $B=[Xin S]$, or most generally, for all $B$ in the sigma field $mathcal{F}(X)$ generated by $X$
    $endgroup$
    – kimchi lover
    Nov 28 '18 at 22:40








  • 1




    $begingroup$
    You also need independence between $U_k$ and$X_j$ for all indices.
    $endgroup$
    – herb steinberg
    Nov 28 '18 at 22:46








1




1




$begingroup$
As for your last question: the rv. $X$ is independent of an event $A$ if all events $B$ defined in terms of $X$ are independent of $A$, such as $B=[Xlt t]$, or $B=[Xin S]$, or most generally, for all $B$ in the sigma field $mathcal{F}(X)$ generated by $X$
$endgroup$
– kimchi lover
Nov 28 '18 at 22:40






$begingroup$
As for your last question: the rv. $X$ is independent of an event $A$ if all events $B$ defined in terms of $X$ are independent of $A$, such as $B=[Xlt t]$, or $B=[Xin S]$, or most generally, for all $B$ in the sigma field $mathcal{F}(X)$ generated by $X$
$endgroup$
– kimchi lover
Nov 28 '18 at 22:40






1




1




$begingroup$
You also need independence between $U_k$ and$X_j$ for all indices.
$endgroup$
– herb steinberg
Nov 28 '18 at 22:46




$begingroup$
You also need independence between $U_k$ and$X_j$ for all indices.
$endgroup$
– herb steinberg
Nov 28 '18 at 22:46










1 Answer
1






active

oldest

votes


















2












$begingroup$

An event and a random variable are independent if for all supported values of the random variable, the conditional expectation of the event given the variable equals the margial probability of the event.



In short you need to establish whether: $${forall uin(0;1)~forall xin(0;1):\quadmathsf P({U_1{>}U_2{>}U_3})=mathsf P({U_1{>}U_2{>}U_3}mid u{=}max{U_i}_{i=1}^3,x{=}min{X_j}_{j=1}^n)}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    $min{X_j)_{j=1}^n}$ is independent of ${U_1{>}U_2{>}U_3}$. How can I prove that ${U_1{>}U_2{>}U_3}$ and $max{U_i}_{i=1}^3$ are independent, or $P({U_1{>}U_2{>}U_3}mid u{=}max{U_i}_{i=1}^3) = P({U_1{>}U_2{>}U_3})$ ?
    $endgroup$
    – Pedro Salgado
    Nov 29 '18 at 12:22








  • 1




    $begingroup$
    Use symmetry. @PedroSalgato
    $endgroup$
    – Graham Kemp
    Nov 29 '18 at 22:37










  • $begingroup$
    how can I use? @graham-kemp
    $endgroup$
    – Pedro Salgado
    Nov 30 '18 at 0:05






  • 1




    $begingroup$
    Argue that that $mathsf P({U_1>U_2>U_3}mid u{=}max{U_i}_{i=1}^3)=mathsf P({U_3>U_1>U_2}mid u{=}max{U_i}_{i=1}^3)$ and so forth, by symmetry. @Pedro-Salgado
    $endgroup$
    – Graham Kemp
    Nov 30 '18 at 0:23











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017723%2findependence-between-random-vector-and-event%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

An event and a random variable are independent if for all supported values of the random variable, the conditional expectation of the event given the variable equals the margial probability of the event.



In short you need to establish whether: $${forall uin(0;1)~forall xin(0;1):\quadmathsf P({U_1{>}U_2{>}U_3})=mathsf P({U_1{>}U_2{>}U_3}mid u{=}max{U_i}_{i=1}^3,x{=}min{X_j}_{j=1}^n)}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    $min{X_j)_{j=1}^n}$ is independent of ${U_1{>}U_2{>}U_3}$. How can I prove that ${U_1{>}U_2{>}U_3}$ and $max{U_i}_{i=1}^3$ are independent, or $P({U_1{>}U_2{>}U_3}mid u{=}max{U_i}_{i=1}^3) = P({U_1{>}U_2{>}U_3})$ ?
    $endgroup$
    – Pedro Salgado
    Nov 29 '18 at 12:22








  • 1




    $begingroup$
    Use symmetry. @PedroSalgato
    $endgroup$
    – Graham Kemp
    Nov 29 '18 at 22:37










  • $begingroup$
    how can I use? @graham-kemp
    $endgroup$
    – Pedro Salgado
    Nov 30 '18 at 0:05






  • 1




    $begingroup$
    Argue that that $mathsf P({U_1>U_2>U_3}mid u{=}max{U_i}_{i=1}^3)=mathsf P({U_3>U_1>U_2}mid u{=}max{U_i}_{i=1}^3)$ and so forth, by symmetry. @Pedro-Salgado
    $endgroup$
    – Graham Kemp
    Nov 30 '18 at 0:23
















2












$begingroup$

An event and a random variable are independent if for all supported values of the random variable, the conditional expectation of the event given the variable equals the margial probability of the event.



In short you need to establish whether: $${forall uin(0;1)~forall xin(0;1):\quadmathsf P({U_1{>}U_2{>}U_3})=mathsf P({U_1{>}U_2{>}U_3}mid u{=}max{U_i}_{i=1}^3,x{=}min{X_j}_{j=1}^n)}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    $min{X_j)_{j=1}^n}$ is independent of ${U_1{>}U_2{>}U_3}$. How can I prove that ${U_1{>}U_2{>}U_3}$ and $max{U_i}_{i=1}^3$ are independent, or $P({U_1{>}U_2{>}U_3}mid u{=}max{U_i}_{i=1}^3) = P({U_1{>}U_2{>}U_3})$ ?
    $endgroup$
    – Pedro Salgado
    Nov 29 '18 at 12:22








  • 1




    $begingroup$
    Use symmetry. @PedroSalgato
    $endgroup$
    – Graham Kemp
    Nov 29 '18 at 22:37










  • $begingroup$
    how can I use? @graham-kemp
    $endgroup$
    – Pedro Salgado
    Nov 30 '18 at 0:05






  • 1




    $begingroup$
    Argue that that $mathsf P({U_1>U_2>U_3}mid u{=}max{U_i}_{i=1}^3)=mathsf P({U_3>U_1>U_2}mid u{=}max{U_i}_{i=1}^3)$ and so forth, by symmetry. @Pedro-Salgado
    $endgroup$
    – Graham Kemp
    Nov 30 '18 at 0:23














2












2








2





$begingroup$

An event and a random variable are independent if for all supported values of the random variable, the conditional expectation of the event given the variable equals the margial probability of the event.



In short you need to establish whether: $${forall uin(0;1)~forall xin(0;1):\quadmathsf P({U_1{>}U_2{>}U_3})=mathsf P({U_1{>}U_2{>}U_3}mid u{=}max{U_i}_{i=1}^3,x{=}min{X_j}_{j=1}^n)}$$






share|cite|improve this answer











$endgroup$



An event and a random variable are independent if for all supported values of the random variable, the conditional expectation of the event given the variable equals the margial probability of the event.



In short you need to establish whether: $${forall uin(0;1)~forall xin(0;1):\quadmathsf P({U_1{>}U_2{>}U_3})=mathsf P({U_1{>}U_2{>}U_3}mid u{=}max{U_i}_{i=1}^3,x{=}min{X_j}_{j=1}^n)}$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Nov 29 '18 at 22:35

























answered Nov 29 '18 at 0:53









Graham KempGraham Kemp

85.3k43378




85.3k43378












  • $begingroup$
    $min{X_j)_{j=1}^n}$ is independent of ${U_1{>}U_2{>}U_3}$. How can I prove that ${U_1{>}U_2{>}U_3}$ and $max{U_i}_{i=1}^3$ are independent, or $P({U_1{>}U_2{>}U_3}mid u{=}max{U_i}_{i=1}^3) = P({U_1{>}U_2{>}U_3})$ ?
    $endgroup$
    – Pedro Salgado
    Nov 29 '18 at 12:22








  • 1




    $begingroup$
    Use symmetry. @PedroSalgato
    $endgroup$
    – Graham Kemp
    Nov 29 '18 at 22:37










  • $begingroup$
    how can I use? @graham-kemp
    $endgroup$
    – Pedro Salgado
    Nov 30 '18 at 0:05






  • 1




    $begingroup$
    Argue that that $mathsf P({U_1>U_2>U_3}mid u{=}max{U_i}_{i=1}^3)=mathsf P({U_3>U_1>U_2}mid u{=}max{U_i}_{i=1}^3)$ and so forth, by symmetry. @Pedro-Salgado
    $endgroup$
    – Graham Kemp
    Nov 30 '18 at 0:23


















  • $begingroup$
    $min{X_j)_{j=1}^n}$ is independent of ${U_1{>}U_2{>}U_3}$. How can I prove that ${U_1{>}U_2{>}U_3}$ and $max{U_i}_{i=1}^3$ are independent, or $P({U_1{>}U_2{>}U_3}mid u{=}max{U_i}_{i=1}^3) = P({U_1{>}U_2{>}U_3})$ ?
    $endgroup$
    – Pedro Salgado
    Nov 29 '18 at 12:22








  • 1




    $begingroup$
    Use symmetry. @PedroSalgato
    $endgroup$
    – Graham Kemp
    Nov 29 '18 at 22:37










  • $begingroup$
    how can I use? @graham-kemp
    $endgroup$
    – Pedro Salgado
    Nov 30 '18 at 0:05






  • 1




    $begingroup$
    Argue that that $mathsf P({U_1>U_2>U_3}mid u{=}max{U_i}_{i=1}^3)=mathsf P({U_3>U_1>U_2}mid u{=}max{U_i}_{i=1}^3)$ and so forth, by symmetry. @Pedro-Salgado
    $endgroup$
    – Graham Kemp
    Nov 30 '18 at 0:23
















$begingroup$
$min{X_j)_{j=1}^n}$ is independent of ${U_1{>}U_2{>}U_3}$. How can I prove that ${U_1{>}U_2{>}U_3}$ and $max{U_i}_{i=1}^3$ are independent, or $P({U_1{>}U_2{>}U_3}mid u{=}max{U_i}_{i=1}^3) = P({U_1{>}U_2{>}U_3})$ ?
$endgroup$
– Pedro Salgado
Nov 29 '18 at 12:22






$begingroup$
$min{X_j)_{j=1}^n}$ is independent of ${U_1{>}U_2{>}U_3}$. How can I prove that ${U_1{>}U_2{>}U_3}$ and $max{U_i}_{i=1}^3$ are independent, or $P({U_1{>}U_2{>}U_3}mid u{=}max{U_i}_{i=1}^3) = P({U_1{>}U_2{>}U_3})$ ?
$endgroup$
– Pedro Salgado
Nov 29 '18 at 12:22






1




1




$begingroup$
Use symmetry. @PedroSalgato
$endgroup$
– Graham Kemp
Nov 29 '18 at 22:37




$begingroup$
Use symmetry. @PedroSalgato
$endgroup$
– Graham Kemp
Nov 29 '18 at 22:37












$begingroup$
how can I use? @graham-kemp
$endgroup$
– Pedro Salgado
Nov 30 '18 at 0:05




$begingroup$
how can I use? @graham-kemp
$endgroup$
– Pedro Salgado
Nov 30 '18 at 0:05




1




1




$begingroup$
Argue that that $mathsf P({U_1>U_2>U_3}mid u{=}max{U_i}_{i=1}^3)=mathsf P({U_3>U_1>U_2}mid u{=}max{U_i}_{i=1}^3)$ and so forth, by symmetry. @Pedro-Salgado
$endgroup$
– Graham Kemp
Nov 30 '18 at 0:23




$begingroup$
Argue that that $mathsf P({U_1>U_2>U_3}mid u{=}max{U_i}_{i=1}^3)=mathsf P({U_3>U_1>U_2}mid u{=}max{U_i}_{i=1}^3)$ and so forth, by symmetry. @Pedro-Salgado
$endgroup$
– Graham Kemp
Nov 30 '18 at 0:23


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017723%2findependence-between-random-vector-and-event%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to change which sound is reproduced for terminal bell?

Can I use Tabulator js library in my java Spring + Thymeleaf project?

Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents