Stopping time with finite expectation












1












$begingroup$



Given a filtered space $left(S, mathcal{Sigma}, {mathcal{Sigma_n: nge 0}}, mathbb{P}right)$, and a stopping time $tau: S to {0, 1,2, ldots}$ with respect to ${mathcal{Sigma_n: nge 0}}$, suppose that there exist $minmathbb{N}$ and $epsilon$ such that, for every $nge 0$:
$$mathbb{E}left[mathbb{I}_{tau le n+m} | mathcal{Sigma_n}right] > epsilon quad text{a.s.}.$$
Prove that $mathbb{E}[tau]<infty$.




I think one should use $E[tau] < infty Longleftrightarrow sumlimits_{n=0}^infty mathbb{P}(tau ge n)< infty.$
However, I cannot find a tight enough bound for $mathbb{P}(tau ge n)$. The best I can do is
$$mathbb{P}(tau > n+m) = 1- mathbb{P}(tau le n+m) = 1 - mathbb{E}left[mathbb{I}_{tau le n+m}right] = 1-mathbb{E}mathbb{E}left[mathbb{I}_{tau le n+m} | mathcal{Sigma_n}right] le 1- mathbb{E}[epsilon] =1 - epsilon.$$
A hint is provided:




For every $k = 1, 2, 3, ldots,$ $$mathbb{P}(tau > (k+1)m) = mathbb{P}(tau > (k+1)m quad text{and} quad tau > km).$$
Use induction to show that $mathbb{P}(tau > km) le (1-epsilon)^k.$











share|cite|improve this question











$endgroup$

















    1












    $begingroup$



    Given a filtered space $left(S, mathcal{Sigma}, {mathcal{Sigma_n: nge 0}}, mathbb{P}right)$, and a stopping time $tau: S to {0, 1,2, ldots}$ with respect to ${mathcal{Sigma_n: nge 0}}$, suppose that there exist $minmathbb{N}$ and $epsilon$ such that, for every $nge 0$:
    $$mathbb{E}left[mathbb{I}_{tau le n+m} | mathcal{Sigma_n}right] > epsilon quad text{a.s.}.$$
    Prove that $mathbb{E}[tau]<infty$.




    I think one should use $E[tau] < infty Longleftrightarrow sumlimits_{n=0}^infty mathbb{P}(tau ge n)< infty.$
    However, I cannot find a tight enough bound for $mathbb{P}(tau ge n)$. The best I can do is
    $$mathbb{P}(tau > n+m) = 1- mathbb{P}(tau le n+m) = 1 - mathbb{E}left[mathbb{I}_{tau le n+m}right] = 1-mathbb{E}mathbb{E}left[mathbb{I}_{tau le n+m} | mathcal{Sigma_n}right] le 1- mathbb{E}[epsilon] =1 - epsilon.$$
    A hint is provided:




    For every $k = 1, 2, 3, ldots,$ $$mathbb{P}(tau > (k+1)m) = mathbb{P}(tau > (k+1)m quad text{and} quad tau > km).$$
    Use induction to show that $mathbb{P}(tau > km) le (1-epsilon)^k.$











    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$



      Given a filtered space $left(S, mathcal{Sigma}, {mathcal{Sigma_n: nge 0}}, mathbb{P}right)$, and a stopping time $tau: S to {0, 1,2, ldots}$ with respect to ${mathcal{Sigma_n: nge 0}}$, suppose that there exist $minmathbb{N}$ and $epsilon$ such that, for every $nge 0$:
      $$mathbb{E}left[mathbb{I}_{tau le n+m} | mathcal{Sigma_n}right] > epsilon quad text{a.s.}.$$
      Prove that $mathbb{E}[tau]<infty$.




      I think one should use $E[tau] < infty Longleftrightarrow sumlimits_{n=0}^infty mathbb{P}(tau ge n)< infty.$
      However, I cannot find a tight enough bound for $mathbb{P}(tau ge n)$. The best I can do is
      $$mathbb{P}(tau > n+m) = 1- mathbb{P}(tau le n+m) = 1 - mathbb{E}left[mathbb{I}_{tau le n+m}right] = 1-mathbb{E}mathbb{E}left[mathbb{I}_{tau le n+m} | mathcal{Sigma_n}right] le 1- mathbb{E}[epsilon] =1 - epsilon.$$
      A hint is provided:




      For every $k = 1, 2, 3, ldots,$ $$mathbb{P}(tau > (k+1)m) = mathbb{P}(tau > (k+1)m quad text{and} quad tau > km).$$
      Use induction to show that $mathbb{P}(tau > km) le (1-epsilon)^k.$











      share|cite|improve this question











      $endgroup$





      Given a filtered space $left(S, mathcal{Sigma}, {mathcal{Sigma_n: nge 0}}, mathbb{P}right)$, and a stopping time $tau: S to {0, 1,2, ldots}$ with respect to ${mathcal{Sigma_n: nge 0}}$, suppose that there exist $minmathbb{N}$ and $epsilon$ such that, for every $nge 0$:
      $$mathbb{E}left[mathbb{I}_{tau le n+m} | mathcal{Sigma_n}right] > epsilon quad text{a.s.}.$$
      Prove that $mathbb{E}[tau]<infty$.




      I think one should use $E[tau] < infty Longleftrightarrow sumlimits_{n=0}^infty mathbb{P}(tau ge n)< infty.$
      However, I cannot find a tight enough bound for $mathbb{P}(tau ge n)$. The best I can do is
      $$mathbb{P}(tau > n+m) = 1- mathbb{P}(tau le n+m) = 1 - mathbb{E}left[mathbb{I}_{tau le n+m}right] = 1-mathbb{E}mathbb{E}left[mathbb{I}_{tau le n+m} | mathcal{Sigma_n}right] le 1- mathbb{E}[epsilon] =1 - epsilon.$$
      A hint is provided:




      For every $k = 1, 2, 3, ldots,$ $$mathbb{P}(tau > (k+1)m) = mathbb{P}(tau > (k+1)m quad text{and} quad tau > km).$$
      Use induction to show that $mathbb{P}(tau > km) le (1-epsilon)^k.$








      probability-theory measure-theory stopping-times






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 29 '18 at 15:05







      math_enthuthiast

















      asked Nov 28 '18 at 22:00









      math_enthuthiastmath_enthuthiast

      16910




      16910






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Since ${tau>km} in mathcal{Sigma_{km}}:$
          $$mathbb{P}(tau le (k+1)m, tau >km) =mathbb{E}[I_{tau le (k+1)m, tau >km}]= mathbb{E}mathbb{E}[I_{tau le (k+1)m, tau >km}|mathcal{Sigma_{km}}] = mathbb{E}mathbb{E}[I_{tau le (k+1)m} I_{tau >km}|mathcal{Sigma_{km}}] = mathbb{E}left[I_{tau >km}mathbb{E}[I_{tau le (k+1)m} |mathcal{Sigma_{km}}]right] > mathbb{E}left[I_{tau >km}epsilonright] = mathbb{P}(tau>km)epsilon.$$
          On the other hand
          $$
          mathbb{P}(tau le (k+1)m, tau >km) = mathbb{P}(km < tau le (k+1)m ) = mathbb{P}(tau>km) - mathbb{P}(tau>(k+1)m),
          $$

          hence
          $$
          mathbb{P}(tau>km) - mathbb{P}(tau>(k+1)m) > mathbb{P}(tau>km)epsilon,
          $$

          or
          $$
          mathbb{P}(tau>(k+1)m) le (1-epsilon)mathbb{P}(tau>km).
          $$

          Induction gives the desired result.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017784%2fstopping-time-with-finite-expectation%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Since ${tau>km} in mathcal{Sigma_{km}}:$
            $$mathbb{P}(tau le (k+1)m, tau >km) =mathbb{E}[I_{tau le (k+1)m, tau >km}]= mathbb{E}mathbb{E}[I_{tau le (k+1)m, tau >km}|mathcal{Sigma_{km}}] = mathbb{E}mathbb{E}[I_{tau le (k+1)m} I_{tau >km}|mathcal{Sigma_{km}}] = mathbb{E}left[I_{tau >km}mathbb{E}[I_{tau le (k+1)m} |mathcal{Sigma_{km}}]right] > mathbb{E}left[I_{tau >km}epsilonright] = mathbb{P}(tau>km)epsilon.$$
            On the other hand
            $$
            mathbb{P}(tau le (k+1)m, tau >km) = mathbb{P}(km < tau le (k+1)m ) = mathbb{P}(tau>km) - mathbb{P}(tau>(k+1)m),
            $$

            hence
            $$
            mathbb{P}(tau>km) - mathbb{P}(tau>(k+1)m) > mathbb{P}(tau>km)epsilon,
            $$

            or
            $$
            mathbb{P}(tau>(k+1)m) le (1-epsilon)mathbb{P}(tau>km).
            $$

            Induction gives the desired result.






            share|cite|improve this answer











            $endgroup$


















              1












              $begingroup$

              Since ${tau>km} in mathcal{Sigma_{km}}:$
              $$mathbb{P}(tau le (k+1)m, tau >km) =mathbb{E}[I_{tau le (k+1)m, tau >km}]= mathbb{E}mathbb{E}[I_{tau le (k+1)m, tau >km}|mathcal{Sigma_{km}}] = mathbb{E}mathbb{E}[I_{tau le (k+1)m} I_{tau >km}|mathcal{Sigma_{km}}] = mathbb{E}left[I_{tau >km}mathbb{E}[I_{tau le (k+1)m} |mathcal{Sigma_{km}}]right] > mathbb{E}left[I_{tau >km}epsilonright] = mathbb{P}(tau>km)epsilon.$$
              On the other hand
              $$
              mathbb{P}(tau le (k+1)m, tau >km) = mathbb{P}(km < tau le (k+1)m ) = mathbb{P}(tau>km) - mathbb{P}(tau>(k+1)m),
              $$

              hence
              $$
              mathbb{P}(tau>km) - mathbb{P}(tau>(k+1)m) > mathbb{P}(tau>km)epsilon,
              $$

              or
              $$
              mathbb{P}(tau>(k+1)m) le (1-epsilon)mathbb{P}(tau>km).
              $$

              Induction gives the desired result.






              share|cite|improve this answer











              $endgroup$
















                1












                1








                1





                $begingroup$

                Since ${tau>km} in mathcal{Sigma_{km}}:$
                $$mathbb{P}(tau le (k+1)m, tau >km) =mathbb{E}[I_{tau le (k+1)m, tau >km}]= mathbb{E}mathbb{E}[I_{tau le (k+1)m, tau >km}|mathcal{Sigma_{km}}] = mathbb{E}mathbb{E}[I_{tau le (k+1)m} I_{tau >km}|mathcal{Sigma_{km}}] = mathbb{E}left[I_{tau >km}mathbb{E}[I_{tau le (k+1)m} |mathcal{Sigma_{km}}]right] > mathbb{E}left[I_{tau >km}epsilonright] = mathbb{P}(tau>km)epsilon.$$
                On the other hand
                $$
                mathbb{P}(tau le (k+1)m, tau >km) = mathbb{P}(km < tau le (k+1)m ) = mathbb{P}(tau>km) - mathbb{P}(tau>(k+1)m),
                $$

                hence
                $$
                mathbb{P}(tau>km) - mathbb{P}(tau>(k+1)m) > mathbb{P}(tau>km)epsilon,
                $$

                or
                $$
                mathbb{P}(tau>(k+1)m) le (1-epsilon)mathbb{P}(tau>km).
                $$

                Induction gives the desired result.






                share|cite|improve this answer











                $endgroup$



                Since ${tau>km} in mathcal{Sigma_{km}}:$
                $$mathbb{P}(tau le (k+1)m, tau >km) =mathbb{E}[I_{tau le (k+1)m, tau >km}]= mathbb{E}mathbb{E}[I_{tau le (k+1)m, tau >km}|mathcal{Sigma_{km}}] = mathbb{E}mathbb{E}[I_{tau le (k+1)m} I_{tau >km}|mathcal{Sigma_{km}}] = mathbb{E}left[I_{tau >km}mathbb{E}[I_{tau le (k+1)m} |mathcal{Sigma_{km}}]right] > mathbb{E}left[I_{tau >km}epsilonright] = mathbb{P}(tau>km)epsilon.$$
                On the other hand
                $$
                mathbb{P}(tau le (k+1)m, tau >km) = mathbb{P}(km < tau le (k+1)m ) = mathbb{P}(tau>km) - mathbb{P}(tau>(k+1)m),
                $$

                hence
                $$
                mathbb{P}(tau>km) - mathbb{P}(tau>(k+1)m) > mathbb{P}(tau>km)epsilon,
                $$

                or
                $$
                mathbb{P}(tau>(k+1)m) le (1-epsilon)mathbb{P}(tau>km).
                $$

                Induction gives the desired result.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Nov 29 '18 at 15:05

























                answered Nov 29 '18 at 0:56









                math_enthuthiastmath_enthuthiast

                16910




                16910






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017784%2fstopping-time-with-finite-expectation%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How to change which sound is reproduced for terminal bell?

                    Can I use Tabulator js library in my java Spring + Thymeleaf project?

                    Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents