Properties of Norm spaces
$begingroup$
Suppose $m(E)<infty$ and $finmathcal{L}^{infty}(E)$. The goal of this problem is to show
begin{align*}
lim_{pto infty}|f|_p=|f|_{infty}.
end{align*}
First, prove that
begin{align*}
lim_{ptoinfty}|f|_pleq |f|_{infty}.
end{align*}Proof:
Assume $m(E)<infty$ and $finmathcal{L}^{infty}(E)$. By definition,
begin{align*}
|f|_p=left(int_E|f|^pdmright)^{1/p}leq left(int_E|f|_{infty}^pright)^{1/p}=|f|_{infty}cdot m(E)^{1/p}<infty.
end{align*}
Letting $pto infty$, we have that $m(E)^{1/p}to 1$. Therefore,
begin{align*}
lim_{ptoinfty}|f|_pleq |f|_{infty}.
end{align*}
I'm not sure if I am missing anything here or need to justify being able to bring the limit inside and applying to $m(E)$.
Next, I need to prove that
begin{align*}
lim_{ptoinfty}|f|_pgeq |f|_{infty}-epsilon
end{align*}
for any $epsilon>0$. Hint: Look at the set
begin{align*}
F={xin E:|f|>|f|_{infty}-epsilon}.
end{align*}
I'm stuck on this part and would appreciate any help, thanks.
functional-analysis
$endgroup$
add a comment |
$begingroup$
Suppose $m(E)<infty$ and $finmathcal{L}^{infty}(E)$. The goal of this problem is to show
begin{align*}
lim_{pto infty}|f|_p=|f|_{infty}.
end{align*}
First, prove that
begin{align*}
lim_{ptoinfty}|f|_pleq |f|_{infty}.
end{align*}Proof:
Assume $m(E)<infty$ and $finmathcal{L}^{infty}(E)$. By definition,
begin{align*}
|f|_p=left(int_E|f|^pdmright)^{1/p}leq left(int_E|f|_{infty}^pright)^{1/p}=|f|_{infty}cdot m(E)^{1/p}<infty.
end{align*}
Letting $pto infty$, we have that $m(E)^{1/p}to 1$. Therefore,
begin{align*}
lim_{ptoinfty}|f|_pleq |f|_{infty}.
end{align*}
I'm not sure if I am missing anything here or need to justify being able to bring the limit inside and applying to $m(E)$.
Next, I need to prove that
begin{align*}
lim_{ptoinfty}|f|_pgeq |f|_{infty}-epsilon
end{align*}
for any $epsilon>0$. Hint: Look at the set
begin{align*}
F={xin E:|f|>|f|_{infty}-epsilon}.
end{align*}
I'm stuck on this part and would appreciate any help, thanks.
functional-analysis
$endgroup$
add a comment |
$begingroup$
Suppose $m(E)<infty$ and $finmathcal{L}^{infty}(E)$. The goal of this problem is to show
begin{align*}
lim_{pto infty}|f|_p=|f|_{infty}.
end{align*}
First, prove that
begin{align*}
lim_{ptoinfty}|f|_pleq |f|_{infty}.
end{align*}Proof:
Assume $m(E)<infty$ and $finmathcal{L}^{infty}(E)$. By definition,
begin{align*}
|f|_p=left(int_E|f|^pdmright)^{1/p}leq left(int_E|f|_{infty}^pright)^{1/p}=|f|_{infty}cdot m(E)^{1/p}<infty.
end{align*}
Letting $pto infty$, we have that $m(E)^{1/p}to 1$. Therefore,
begin{align*}
lim_{ptoinfty}|f|_pleq |f|_{infty}.
end{align*}
I'm not sure if I am missing anything here or need to justify being able to bring the limit inside and applying to $m(E)$.
Next, I need to prove that
begin{align*}
lim_{ptoinfty}|f|_pgeq |f|_{infty}-epsilon
end{align*}
for any $epsilon>0$. Hint: Look at the set
begin{align*}
F={xin E:|f|>|f|_{infty}-epsilon}.
end{align*}
I'm stuck on this part and would appreciate any help, thanks.
functional-analysis
$endgroup$
Suppose $m(E)<infty$ and $finmathcal{L}^{infty}(E)$. The goal of this problem is to show
begin{align*}
lim_{pto infty}|f|_p=|f|_{infty}.
end{align*}
First, prove that
begin{align*}
lim_{ptoinfty}|f|_pleq |f|_{infty}.
end{align*}Proof:
Assume $m(E)<infty$ and $finmathcal{L}^{infty}(E)$. By definition,
begin{align*}
|f|_p=left(int_E|f|^pdmright)^{1/p}leq left(int_E|f|_{infty}^pright)^{1/p}=|f|_{infty}cdot m(E)^{1/p}<infty.
end{align*}
Letting $pto infty$, we have that $m(E)^{1/p}to 1$. Therefore,
begin{align*}
lim_{ptoinfty}|f|_pleq |f|_{infty}.
end{align*}
I'm not sure if I am missing anything here or need to justify being able to bring the limit inside and applying to $m(E)$.
Next, I need to prove that
begin{align*}
lim_{ptoinfty}|f|_pgeq |f|_{infty}-epsilon
end{align*}
for any $epsilon>0$. Hint: Look at the set
begin{align*}
F={xin E:|f|>|f|_{infty}-epsilon}.
end{align*}
I'm stuck on this part and would appreciate any help, thanks.
functional-analysis
functional-analysis
asked Dec 4 '18 at 19:18
TNTTNT
596
596
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You have that
$||f||_p^p=int_F|f|^p+int_{F^c}|f|^p>int_F|f|^p >$
$>int_F (||f||_infty -epsilon)^p=(||f||_infty -epsilon)^pm(F) $
Then
$||f||_p> (||f||_infty -epsilon)(m(F))^frac{1}{p}$
So if you fixed $epsilon$ (and $ F=F_{epsilon}$ ) you have that for $pto infty$
$lim_p||f||_p>||f||_infty -epsilon$
for every $epsilon>0$ so
$lim_p ||f||_p>||f||_infty$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026001%2fproperties-of-norm-spaces%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You have that
$||f||_p^p=int_F|f|^p+int_{F^c}|f|^p>int_F|f|^p >$
$>int_F (||f||_infty -epsilon)^p=(||f||_infty -epsilon)^pm(F) $
Then
$||f||_p> (||f||_infty -epsilon)(m(F))^frac{1}{p}$
So if you fixed $epsilon$ (and $ F=F_{epsilon}$ ) you have that for $pto infty$
$lim_p||f||_p>||f||_infty -epsilon$
for every $epsilon>0$ so
$lim_p ||f||_p>||f||_infty$
$endgroup$
add a comment |
$begingroup$
You have that
$||f||_p^p=int_F|f|^p+int_{F^c}|f|^p>int_F|f|^p >$
$>int_F (||f||_infty -epsilon)^p=(||f||_infty -epsilon)^pm(F) $
Then
$||f||_p> (||f||_infty -epsilon)(m(F))^frac{1}{p}$
So if you fixed $epsilon$ (and $ F=F_{epsilon}$ ) you have that for $pto infty$
$lim_p||f||_p>||f||_infty -epsilon$
for every $epsilon>0$ so
$lim_p ||f||_p>||f||_infty$
$endgroup$
add a comment |
$begingroup$
You have that
$||f||_p^p=int_F|f|^p+int_{F^c}|f|^p>int_F|f|^p >$
$>int_F (||f||_infty -epsilon)^p=(||f||_infty -epsilon)^pm(F) $
Then
$||f||_p> (||f||_infty -epsilon)(m(F))^frac{1}{p}$
So if you fixed $epsilon$ (and $ F=F_{epsilon}$ ) you have that for $pto infty$
$lim_p||f||_p>||f||_infty -epsilon$
for every $epsilon>0$ so
$lim_p ||f||_p>||f||_infty$
$endgroup$
You have that
$||f||_p^p=int_F|f|^p+int_{F^c}|f|^p>int_F|f|^p >$
$>int_F (||f||_infty -epsilon)^p=(||f||_infty -epsilon)^pm(F) $
Then
$||f||_p> (||f||_infty -epsilon)(m(F))^frac{1}{p}$
So if you fixed $epsilon$ (and $ F=F_{epsilon}$ ) you have that for $pto infty$
$lim_p||f||_p>||f||_infty -epsilon$
for every $epsilon>0$ so
$lim_p ||f||_p>||f||_infty$
edited Dec 4 '18 at 19:38
answered Dec 4 '18 at 19:27
Federico FalluccaFederico Fallucca
2,185210
2,185210
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026001%2fproperties-of-norm-spaces%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown