closed form for $sum_{ngeq1}pi nlogfrac{4n+1}{4n-1}prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}$?
$begingroup$
Look at what I found!
$$int_{-pi/4}^{pi/4}xcsc x mathrm dx=sum_{ngeq1}pi nlogbigg(frac{4n+1}{4n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}$$
I want to know if it is valid, and if there is a nice closed form to go with my series.
Here's my proof.
Recall the famous product representation
$$sin x=xprod_{kgeq1}bigg(1-frac{x^2}{pi^2k^2}bigg)$$
Hence we have that
$$I=int_{-pi/4}^{pi/4}xcsc x mathrm dx=int_{-pi/4}^{pi/4}prod_{kgeq1}frac{pi^2k^2}{pi^2k^2-x^2}mathrm dx$$
We may now preform a fraction decomposition, and start with
$$prod_{kgeq1}frac{pi^2k^2}{pi^2k^2-x^2}=sum_{ngeq1}frac{pi^2n^2}{pi^2n^2-x^2}b_n$$
Multiplying both sides by $prod_{kgeq1}frac{pi^2k^2-x^2}{pi^2k^2}$,
$$1=sum_{ngeq1}frac{pi^2n^2}{pi^2n^2-x^2}b_nprod_{kgeq1}frac{pi^2k^2-x^2}{pi^2k^2}$$
$$1=sum_{ngeq1}b_nprod_{kgeq1\kneq n}frac{pi^2k^2-x^2}{pi^2k^2}$$
Which in turn implies that, for any $minBbb N$,
$$1=b_mprod_{kgeq1\kneq m}frac{pi^2k^2-pi^2m^2}{pi^2k^2}$$
$$b_m=prod_{kgeq1\kneq m}frac{k^2}{k^2-m^2}$$
Hence we can begin the process of integration:
$$I=int_{-pi/4}^{pi/4}sum_{ngeq1}frac{pi^2n^2}{pi^2n^2-x^2}b_nmathrm dx$$
$$I=sum_{ngeq1}pi^2n^2b_nint_{-pi/4}^{pi/4}frac{mathrm dx}{pi^2n^2-x^2}$$
This final integral evaluates to
$$int_{-pi/4}^{pi/4}frac{mathrm dx}{pi^2n^2-x^2}=frac1{pi n}logbigg(frac{4n+1}{4n-1}bigg)$$
So finally we have
$$I=sum_{ngeq1}pi nlogbigg(frac{4n+1}{4n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}$$
Does this work? Is there a closed form value for $I$? Is there another way to prove this?
Update:
Integrating form $0$ to $pi/2$ instead of $-pi/4$ to $pi/4$ gives, according to Wolfram Alpha,
$$sum_{ngeq1}frac{pi n}2logbigg(frac{2n+1}{2n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}=2G$$
Where $G$ is Catalan's constant. Isn't that cool?! That's crazy cool!
integration closed-form alternative-proof
$endgroup$
add a comment |
$begingroup$
Look at what I found!
$$int_{-pi/4}^{pi/4}xcsc x mathrm dx=sum_{ngeq1}pi nlogbigg(frac{4n+1}{4n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}$$
I want to know if it is valid, and if there is a nice closed form to go with my series.
Here's my proof.
Recall the famous product representation
$$sin x=xprod_{kgeq1}bigg(1-frac{x^2}{pi^2k^2}bigg)$$
Hence we have that
$$I=int_{-pi/4}^{pi/4}xcsc x mathrm dx=int_{-pi/4}^{pi/4}prod_{kgeq1}frac{pi^2k^2}{pi^2k^2-x^2}mathrm dx$$
We may now preform a fraction decomposition, and start with
$$prod_{kgeq1}frac{pi^2k^2}{pi^2k^2-x^2}=sum_{ngeq1}frac{pi^2n^2}{pi^2n^2-x^2}b_n$$
Multiplying both sides by $prod_{kgeq1}frac{pi^2k^2-x^2}{pi^2k^2}$,
$$1=sum_{ngeq1}frac{pi^2n^2}{pi^2n^2-x^2}b_nprod_{kgeq1}frac{pi^2k^2-x^2}{pi^2k^2}$$
$$1=sum_{ngeq1}b_nprod_{kgeq1\kneq n}frac{pi^2k^2-x^2}{pi^2k^2}$$
Which in turn implies that, for any $minBbb N$,
$$1=b_mprod_{kgeq1\kneq m}frac{pi^2k^2-pi^2m^2}{pi^2k^2}$$
$$b_m=prod_{kgeq1\kneq m}frac{k^2}{k^2-m^2}$$
Hence we can begin the process of integration:
$$I=int_{-pi/4}^{pi/4}sum_{ngeq1}frac{pi^2n^2}{pi^2n^2-x^2}b_nmathrm dx$$
$$I=sum_{ngeq1}pi^2n^2b_nint_{-pi/4}^{pi/4}frac{mathrm dx}{pi^2n^2-x^2}$$
This final integral evaluates to
$$int_{-pi/4}^{pi/4}frac{mathrm dx}{pi^2n^2-x^2}=frac1{pi n}logbigg(frac{4n+1}{4n-1}bigg)$$
So finally we have
$$I=sum_{ngeq1}pi nlogbigg(frac{4n+1}{4n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}$$
Does this work? Is there a closed form value for $I$? Is there another way to prove this?
Update:
Integrating form $0$ to $pi/2$ instead of $-pi/4$ to $pi/4$ gives, according to Wolfram Alpha,
$$sum_{ngeq1}frac{pi n}2logbigg(frac{2n+1}{2n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}=2G$$
Where $G$ is Catalan's constant. Isn't that cool?! That's crazy cool!
integration closed-form alternative-proof
$endgroup$
1
$begingroup$
Yes it is 'crazy-cool' ... & there are lirerally thousands of crazy-cool results like that! I can't get enough of 'em.
$endgroup$
– AmbretteOrrisey
Dec 4 '18 at 22:00
add a comment |
$begingroup$
Look at what I found!
$$int_{-pi/4}^{pi/4}xcsc x mathrm dx=sum_{ngeq1}pi nlogbigg(frac{4n+1}{4n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}$$
I want to know if it is valid, and if there is a nice closed form to go with my series.
Here's my proof.
Recall the famous product representation
$$sin x=xprod_{kgeq1}bigg(1-frac{x^2}{pi^2k^2}bigg)$$
Hence we have that
$$I=int_{-pi/4}^{pi/4}xcsc x mathrm dx=int_{-pi/4}^{pi/4}prod_{kgeq1}frac{pi^2k^2}{pi^2k^2-x^2}mathrm dx$$
We may now preform a fraction decomposition, and start with
$$prod_{kgeq1}frac{pi^2k^2}{pi^2k^2-x^2}=sum_{ngeq1}frac{pi^2n^2}{pi^2n^2-x^2}b_n$$
Multiplying both sides by $prod_{kgeq1}frac{pi^2k^2-x^2}{pi^2k^2}$,
$$1=sum_{ngeq1}frac{pi^2n^2}{pi^2n^2-x^2}b_nprod_{kgeq1}frac{pi^2k^2-x^2}{pi^2k^2}$$
$$1=sum_{ngeq1}b_nprod_{kgeq1\kneq n}frac{pi^2k^2-x^2}{pi^2k^2}$$
Which in turn implies that, for any $minBbb N$,
$$1=b_mprod_{kgeq1\kneq m}frac{pi^2k^2-pi^2m^2}{pi^2k^2}$$
$$b_m=prod_{kgeq1\kneq m}frac{k^2}{k^2-m^2}$$
Hence we can begin the process of integration:
$$I=int_{-pi/4}^{pi/4}sum_{ngeq1}frac{pi^2n^2}{pi^2n^2-x^2}b_nmathrm dx$$
$$I=sum_{ngeq1}pi^2n^2b_nint_{-pi/4}^{pi/4}frac{mathrm dx}{pi^2n^2-x^2}$$
This final integral evaluates to
$$int_{-pi/4}^{pi/4}frac{mathrm dx}{pi^2n^2-x^2}=frac1{pi n}logbigg(frac{4n+1}{4n-1}bigg)$$
So finally we have
$$I=sum_{ngeq1}pi nlogbigg(frac{4n+1}{4n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}$$
Does this work? Is there a closed form value for $I$? Is there another way to prove this?
Update:
Integrating form $0$ to $pi/2$ instead of $-pi/4$ to $pi/4$ gives, according to Wolfram Alpha,
$$sum_{ngeq1}frac{pi n}2logbigg(frac{2n+1}{2n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}=2G$$
Where $G$ is Catalan's constant. Isn't that cool?! That's crazy cool!
integration closed-form alternative-proof
$endgroup$
Look at what I found!
$$int_{-pi/4}^{pi/4}xcsc x mathrm dx=sum_{ngeq1}pi nlogbigg(frac{4n+1}{4n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}$$
I want to know if it is valid, and if there is a nice closed form to go with my series.
Here's my proof.
Recall the famous product representation
$$sin x=xprod_{kgeq1}bigg(1-frac{x^2}{pi^2k^2}bigg)$$
Hence we have that
$$I=int_{-pi/4}^{pi/4}xcsc x mathrm dx=int_{-pi/4}^{pi/4}prod_{kgeq1}frac{pi^2k^2}{pi^2k^2-x^2}mathrm dx$$
We may now preform a fraction decomposition, and start with
$$prod_{kgeq1}frac{pi^2k^2}{pi^2k^2-x^2}=sum_{ngeq1}frac{pi^2n^2}{pi^2n^2-x^2}b_n$$
Multiplying both sides by $prod_{kgeq1}frac{pi^2k^2-x^2}{pi^2k^2}$,
$$1=sum_{ngeq1}frac{pi^2n^2}{pi^2n^2-x^2}b_nprod_{kgeq1}frac{pi^2k^2-x^2}{pi^2k^2}$$
$$1=sum_{ngeq1}b_nprod_{kgeq1\kneq n}frac{pi^2k^2-x^2}{pi^2k^2}$$
Which in turn implies that, for any $minBbb N$,
$$1=b_mprod_{kgeq1\kneq m}frac{pi^2k^2-pi^2m^2}{pi^2k^2}$$
$$b_m=prod_{kgeq1\kneq m}frac{k^2}{k^2-m^2}$$
Hence we can begin the process of integration:
$$I=int_{-pi/4}^{pi/4}sum_{ngeq1}frac{pi^2n^2}{pi^2n^2-x^2}b_nmathrm dx$$
$$I=sum_{ngeq1}pi^2n^2b_nint_{-pi/4}^{pi/4}frac{mathrm dx}{pi^2n^2-x^2}$$
This final integral evaluates to
$$int_{-pi/4}^{pi/4}frac{mathrm dx}{pi^2n^2-x^2}=frac1{pi n}logbigg(frac{4n+1}{4n-1}bigg)$$
So finally we have
$$I=sum_{ngeq1}pi nlogbigg(frac{4n+1}{4n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}$$
Does this work? Is there a closed form value for $I$? Is there another way to prove this?
Update:
Integrating form $0$ to $pi/2$ instead of $-pi/4$ to $pi/4$ gives, according to Wolfram Alpha,
$$sum_{ngeq1}frac{pi n}2logbigg(frac{2n+1}{2n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}=2G$$
Where $G$ is Catalan's constant. Isn't that cool?! That's crazy cool!
integration closed-form alternative-proof
integration closed-form alternative-proof
edited Dec 4 '18 at 21:55
clathratus
asked Dec 4 '18 at 18:34
clathratusclathratus
4,725337
4,725337
1
$begingroup$
Yes it is 'crazy-cool' ... & there are lirerally thousands of crazy-cool results like that! I can't get enough of 'em.
$endgroup$
– AmbretteOrrisey
Dec 4 '18 at 22:00
add a comment |
1
$begingroup$
Yes it is 'crazy-cool' ... & there are lirerally thousands of crazy-cool results like that! I can't get enough of 'em.
$endgroup$
– AmbretteOrrisey
Dec 4 '18 at 22:00
1
1
$begingroup$
Yes it is 'crazy-cool' ... & there are lirerally thousands of crazy-cool results like that! I can't get enough of 'em.
$endgroup$
– AmbretteOrrisey
Dec 4 '18 at 22:00
$begingroup$
Yes it is 'crazy-cool' ... & there are lirerally thousands of crazy-cool results like that! I can't get enough of 'em.
$endgroup$
– AmbretteOrrisey
Dec 4 '18 at 22:00
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025944%2fclosed-form-for-sum-n-geq1-pi-n-log-frac4n14n-1-prod-k-geq1-k-neq-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025944%2fclosed-form-for-sum-n-geq1-pi-n-log-frac4n14n-1-prod-k-geq1-k-neq-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Yes it is 'crazy-cool' ... & there are lirerally thousands of crazy-cool results like that! I can't get enough of 'em.
$endgroup$
– AmbretteOrrisey
Dec 4 '18 at 22:00