General derivative of the exponential operator w.r.t. a parameter
$begingroup$
I am interested in the calculation of the general $N$th derivative w.r.t. a parameter $lambda$ of a quantum mechanical exponential operator with the following structure:
begin{equation*}
frac{mathrm d^N}{mathrm d lambda^N} e^{-beta hat H(lambda)}
end{equation*}
In the case $n=1$ this reads as
begin{equation*}
sum_{n=0}^{+infty}sum_{m=0}^{n-1}frac{1}{n!}[hat H(lambda)]^{m}frac{mathrm dhat H(lambda)}{mathrm d lambda}[hat H(lambda)]^{n-m-1}
end{equation*}
Is there a compact fashion to rearrange the expression above for the general $N$th derivative?
quantum-mechanics operators mathematical-physics hamiltonian differentiation
$endgroup$
add a comment |
$begingroup$
I am interested in the calculation of the general $N$th derivative w.r.t. a parameter $lambda$ of a quantum mechanical exponential operator with the following structure:
begin{equation*}
frac{mathrm d^N}{mathrm d lambda^N} e^{-beta hat H(lambda)}
end{equation*}
In the case $n=1$ this reads as
begin{equation*}
sum_{n=0}^{+infty}sum_{m=0}^{n-1}frac{1}{n!}[hat H(lambda)]^{m}frac{mathrm dhat H(lambda)}{mathrm d lambda}[hat H(lambda)]^{n-m-1}
end{equation*}
Is there a compact fashion to rearrange the expression above for the general $N$th derivative?
quantum-mechanics operators mathematical-physics hamiltonian differentiation
$endgroup$
1
$begingroup$
WP.
$endgroup$
– Cosmas Zachos
Feb 20 at 12:15
add a comment |
$begingroup$
I am interested in the calculation of the general $N$th derivative w.r.t. a parameter $lambda$ of a quantum mechanical exponential operator with the following structure:
begin{equation*}
frac{mathrm d^N}{mathrm d lambda^N} e^{-beta hat H(lambda)}
end{equation*}
In the case $n=1$ this reads as
begin{equation*}
sum_{n=0}^{+infty}sum_{m=0}^{n-1}frac{1}{n!}[hat H(lambda)]^{m}frac{mathrm dhat H(lambda)}{mathrm d lambda}[hat H(lambda)]^{n-m-1}
end{equation*}
Is there a compact fashion to rearrange the expression above for the general $N$th derivative?
quantum-mechanics operators mathematical-physics hamiltonian differentiation
$endgroup$
I am interested in the calculation of the general $N$th derivative w.r.t. a parameter $lambda$ of a quantum mechanical exponential operator with the following structure:
begin{equation*}
frac{mathrm d^N}{mathrm d lambda^N} e^{-beta hat H(lambda)}
end{equation*}
In the case $n=1$ this reads as
begin{equation*}
sum_{n=0}^{+infty}sum_{m=0}^{n-1}frac{1}{n!}[hat H(lambda)]^{m}frac{mathrm dhat H(lambda)}{mathrm d lambda}[hat H(lambda)]^{n-m-1}
end{equation*}
Is there a compact fashion to rearrange the expression above for the general $N$th derivative?
quantum-mechanics operators mathematical-physics hamiltonian differentiation
quantum-mechanics operators mathematical-physics hamiltonian differentiation
edited Feb 20 at 11:17
Qmechanic♦
105k121901203
105k121901203
asked Feb 20 at 9:54
GrazGraz
505
505
1
$begingroup$
WP.
$endgroup$
– Cosmas Zachos
Feb 20 at 12:15
add a comment |
1
$begingroup$
WP.
$endgroup$
– Cosmas Zachos
Feb 20 at 12:15
1
1
$begingroup$
WP.
$endgroup$
– Cosmas Zachos
Feb 20 at 12:15
$begingroup$
WP.
$endgroup$
– Cosmas Zachos
Feb 20 at 12:15
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint: Use repeatedly the identity for the 1st derivative
$$ frac{d}{dlambda}e^{that{A}} ~=~ int_0^t!dt_1~ e^{(t-t_1)hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}}~=~ iint_{mathbb{R}^2_+}!dt_1~dt_2~delta(t!-!t_1!-!t_2)~ e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} , qquad t~in~mathbb{R}_+ .tag{1} $$
For a proof of eq. (1) see e.g. my Phys.SE answer here. Then the 2nd derivative becomes
$$begin{align} frac{1}{2!}frac{d^2}{dlambda^2}e^{that{A}}
&~=~iiint_{mathbb{R}^3_+}!dt_1~dt_2~dt_3~delta(t!-!t_1!-!t_2!-!t_3)~ e^{t_3hat{A}}frac{dhat{A}}{dlambda}e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} cr
&~+~ iint_{mathbb{R}^2_+}!dt_1~dt_2~delta(t!-!t_1!-!t_2)~ e^{t_2hat{A}}frac{1}{2!}frac{d^2hat{A}}{dlambda^2}e^{t_1hat{A}} , qquad t~in~mathbb{R}_+ ,end{align}tag{2} $$
the 3rd derivative becomes
$$begin{align} frac{1}{3!}frac{d^3}{dlambda^3}e^{that{A}}
&~=~iiiint_{mathbb{R}^4_+}!dt_1~dt_2~dt_3~dt_4~delta(t!-!t_1!-!t_2!-!t_3!-!t_4)~ e^{t_4hat{A}}frac{dhat{A}}{dlambda}e^{t_3hat{A}}frac{dhat{A}}{dlambda}e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} cr
&~+~iiint_{mathbb{R}^3_+}!dt_1~dt_2~dt_3~delta(t!-!t_1!-!t_2!-!t_3)~ e^{t_3hat{A}}frac{dhat{A}}{dlambda}e^{t_2hat{A}}frac{1}{2!}frac{d^2hat{A}}{dlambda^2}e^{t_1hat{A}} cr
&~+~iiint_{mathbb{R}^3_+}!dt_1~dt_2~dt_3~delta(t!-!t_1!-!t_2!-!t_3)~ e^{t_3hat{A}}frac{1}{2!}frac{d^2hat{A}}{dlambda^2}e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} cr
&~+~ iint_{mathbb{R}^2_+}!dt_1~dt_2~delta(t!-!t_1!-!t_2)~ e^{t_2hat{A}}frac{1}{3!}frac{d^3hat{A}}{dlambda^3}e^{t_1hat{A}} , qquad t~in~mathbb{R}_+ ,end{align}tag{3} $$
and so forth. The $N$th derivative $$frac{1}{N!}frac{d^N}{dlambda^N}e^{that{A}}~=~sumstackrel{t_{n+1}}{rule{1cm}{.5mm}}fbox{$k_n$}stackrel{t_n}{rule{1cm}{.5mm}}cdots stackrel{t_3}{rule{1cm}{.5mm}}fbox{$k_2$}stackrel{t_2}{rule{1cm}{.5mm}}fbox{$k_1$}stackrel{t_1}{rule{1cm}{.5mm}}tag{N}$$
is a sum of possible Feynman diagrams with Schwinger propagators $$stackrel{t_i}{rule{1cm}{.5mm}}~=~e^{t_ihat{A}}, qquad t_i~in~mathbb{R}_+,tag{P}$$
and 2-vertices $$fbox{$k_i$}~=~frac{1}{k_i!}frac{d^{k_i}hat{A}}{dlambda^{k_i}}, qquad k_i~in~mathbb{N}.tag{V}$$ Each diagram in the sum has weight 1.
$endgroup$
$begingroup$
That's horrifying.
$endgroup$
– Emilio Pisanty
Feb 21 at 18:17
1
$begingroup$
Indeed a computational nighmare. But there is beauty behind the madness.
$endgroup$
– Qmechanic♦
Feb 23 at 13:28
$begingroup$
The problem with that is that you need to get through the madness to get to the beauty.
$endgroup$
– Emilio Pisanty
Feb 23 at 13:30
$begingroup$
$uparrow$ Ha-ha.
$endgroup$
– Qmechanic♦
Feb 23 at 14:20
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "151"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f461860%2fgeneral-derivative-of-the-exponential-operator-w-r-t-a-parameter%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: Use repeatedly the identity for the 1st derivative
$$ frac{d}{dlambda}e^{that{A}} ~=~ int_0^t!dt_1~ e^{(t-t_1)hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}}~=~ iint_{mathbb{R}^2_+}!dt_1~dt_2~delta(t!-!t_1!-!t_2)~ e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} , qquad t~in~mathbb{R}_+ .tag{1} $$
For a proof of eq. (1) see e.g. my Phys.SE answer here. Then the 2nd derivative becomes
$$begin{align} frac{1}{2!}frac{d^2}{dlambda^2}e^{that{A}}
&~=~iiint_{mathbb{R}^3_+}!dt_1~dt_2~dt_3~delta(t!-!t_1!-!t_2!-!t_3)~ e^{t_3hat{A}}frac{dhat{A}}{dlambda}e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} cr
&~+~ iint_{mathbb{R}^2_+}!dt_1~dt_2~delta(t!-!t_1!-!t_2)~ e^{t_2hat{A}}frac{1}{2!}frac{d^2hat{A}}{dlambda^2}e^{t_1hat{A}} , qquad t~in~mathbb{R}_+ ,end{align}tag{2} $$
the 3rd derivative becomes
$$begin{align} frac{1}{3!}frac{d^3}{dlambda^3}e^{that{A}}
&~=~iiiint_{mathbb{R}^4_+}!dt_1~dt_2~dt_3~dt_4~delta(t!-!t_1!-!t_2!-!t_3!-!t_4)~ e^{t_4hat{A}}frac{dhat{A}}{dlambda}e^{t_3hat{A}}frac{dhat{A}}{dlambda}e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} cr
&~+~iiint_{mathbb{R}^3_+}!dt_1~dt_2~dt_3~delta(t!-!t_1!-!t_2!-!t_3)~ e^{t_3hat{A}}frac{dhat{A}}{dlambda}e^{t_2hat{A}}frac{1}{2!}frac{d^2hat{A}}{dlambda^2}e^{t_1hat{A}} cr
&~+~iiint_{mathbb{R}^3_+}!dt_1~dt_2~dt_3~delta(t!-!t_1!-!t_2!-!t_3)~ e^{t_3hat{A}}frac{1}{2!}frac{d^2hat{A}}{dlambda^2}e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} cr
&~+~ iint_{mathbb{R}^2_+}!dt_1~dt_2~delta(t!-!t_1!-!t_2)~ e^{t_2hat{A}}frac{1}{3!}frac{d^3hat{A}}{dlambda^3}e^{t_1hat{A}} , qquad t~in~mathbb{R}_+ ,end{align}tag{3} $$
and so forth. The $N$th derivative $$frac{1}{N!}frac{d^N}{dlambda^N}e^{that{A}}~=~sumstackrel{t_{n+1}}{rule{1cm}{.5mm}}fbox{$k_n$}stackrel{t_n}{rule{1cm}{.5mm}}cdots stackrel{t_3}{rule{1cm}{.5mm}}fbox{$k_2$}stackrel{t_2}{rule{1cm}{.5mm}}fbox{$k_1$}stackrel{t_1}{rule{1cm}{.5mm}}tag{N}$$
is a sum of possible Feynman diagrams with Schwinger propagators $$stackrel{t_i}{rule{1cm}{.5mm}}~=~e^{t_ihat{A}}, qquad t_i~in~mathbb{R}_+,tag{P}$$
and 2-vertices $$fbox{$k_i$}~=~frac{1}{k_i!}frac{d^{k_i}hat{A}}{dlambda^{k_i}}, qquad k_i~in~mathbb{N}.tag{V}$$ Each diagram in the sum has weight 1.
$endgroup$
$begingroup$
That's horrifying.
$endgroup$
– Emilio Pisanty
Feb 21 at 18:17
1
$begingroup$
Indeed a computational nighmare. But there is beauty behind the madness.
$endgroup$
– Qmechanic♦
Feb 23 at 13:28
$begingroup$
The problem with that is that you need to get through the madness to get to the beauty.
$endgroup$
– Emilio Pisanty
Feb 23 at 13:30
$begingroup$
$uparrow$ Ha-ha.
$endgroup$
– Qmechanic♦
Feb 23 at 14:20
add a comment |
$begingroup$
Hint: Use repeatedly the identity for the 1st derivative
$$ frac{d}{dlambda}e^{that{A}} ~=~ int_0^t!dt_1~ e^{(t-t_1)hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}}~=~ iint_{mathbb{R}^2_+}!dt_1~dt_2~delta(t!-!t_1!-!t_2)~ e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} , qquad t~in~mathbb{R}_+ .tag{1} $$
For a proof of eq. (1) see e.g. my Phys.SE answer here. Then the 2nd derivative becomes
$$begin{align} frac{1}{2!}frac{d^2}{dlambda^2}e^{that{A}}
&~=~iiint_{mathbb{R}^3_+}!dt_1~dt_2~dt_3~delta(t!-!t_1!-!t_2!-!t_3)~ e^{t_3hat{A}}frac{dhat{A}}{dlambda}e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} cr
&~+~ iint_{mathbb{R}^2_+}!dt_1~dt_2~delta(t!-!t_1!-!t_2)~ e^{t_2hat{A}}frac{1}{2!}frac{d^2hat{A}}{dlambda^2}e^{t_1hat{A}} , qquad t~in~mathbb{R}_+ ,end{align}tag{2} $$
the 3rd derivative becomes
$$begin{align} frac{1}{3!}frac{d^3}{dlambda^3}e^{that{A}}
&~=~iiiint_{mathbb{R}^4_+}!dt_1~dt_2~dt_3~dt_4~delta(t!-!t_1!-!t_2!-!t_3!-!t_4)~ e^{t_4hat{A}}frac{dhat{A}}{dlambda}e^{t_3hat{A}}frac{dhat{A}}{dlambda}e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} cr
&~+~iiint_{mathbb{R}^3_+}!dt_1~dt_2~dt_3~delta(t!-!t_1!-!t_2!-!t_3)~ e^{t_3hat{A}}frac{dhat{A}}{dlambda}e^{t_2hat{A}}frac{1}{2!}frac{d^2hat{A}}{dlambda^2}e^{t_1hat{A}} cr
&~+~iiint_{mathbb{R}^3_+}!dt_1~dt_2~dt_3~delta(t!-!t_1!-!t_2!-!t_3)~ e^{t_3hat{A}}frac{1}{2!}frac{d^2hat{A}}{dlambda^2}e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} cr
&~+~ iint_{mathbb{R}^2_+}!dt_1~dt_2~delta(t!-!t_1!-!t_2)~ e^{t_2hat{A}}frac{1}{3!}frac{d^3hat{A}}{dlambda^3}e^{t_1hat{A}} , qquad t~in~mathbb{R}_+ ,end{align}tag{3} $$
and so forth. The $N$th derivative $$frac{1}{N!}frac{d^N}{dlambda^N}e^{that{A}}~=~sumstackrel{t_{n+1}}{rule{1cm}{.5mm}}fbox{$k_n$}stackrel{t_n}{rule{1cm}{.5mm}}cdots stackrel{t_3}{rule{1cm}{.5mm}}fbox{$k_2$}stackrel{t_2}{rule{1cm}{.5mm}}fbox{$k_1$}stackrel{t_1}{rule{1cm}{.5mm}}tag{N}$$
is a sum of possible Feynman diagrams with Schwinger propagators $$stackrel{t_i}{rule{1cm}{.5mm}}~=~e^{t_ihat{A}}, qquad t_i~in~mathbb{R}_+,tag{P}$$
and 2-vertices $$fbox{$k_i$}~=~frac{1}{k_i!}frac{d^{k_i}hat{A}}{dlambda^{k_i}}, qquad k_i~in~mathbb{N}.tag{V}$$ Each diagram in the sum has weight 1.
$endgroup$
$begingroup$
That's horrifying.
$endgroup$
– Emilio Pisanty
Feb 21 at 18:17
1
$begingroup$
Indeed a computational nighmare. But there is beauty behind the madness.
$endgroup$
– Qmechanic♦
Feb 23 at 13:28
$begingroup$
The problem with that is that you need to get through the madness to get to the beauty.
$endgroup$
– Emilio Pisanty
Feb 23 at 13:30
$begingroup$
$uparrow$ Ha-ha.
$endgroup$
– Qmechanic♦
Feb 23 at 14:20
add a comment |
$begingroup$
Hint: Use repeatedly the identity for the 1st derivative
$$ frac{d}{dlambda}e^{that{A}} ~=~ int_0^t!dt_1~ e^{(t-t_1)hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}}~=~ iint_{mathbb{R}^2_+}!dt_1~dt_2~delta(t!-!t_1!-!t_2)~ e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} , qquad t~in~mathbb{R}_+ .tag{1} $$
For a proof of eq. (1) see e.g. my Phys.SE answer here. Then the 2nd derivative becomes
$$begin{align} frac{1}{2!}frac{d^2}{dlambda^2}e^{that{A}}
&~=~iiint_{mathbb{R}^3_+}!dt_1~dt_2~dt_3~delta(t!-!t_1!-!t_2!-!t_3)~ e^{t_3hat{A}}frac{dhat{A}}{dlambda}e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} cr
&~+~ iint_{mathbb{R}^2_+}!dt_1~dt_2~delta(t!-!t_1!-!t_2)~ e^{t_2hat{A}}frac{1}{2!}frac{d^2hat{A}}{dlambda^2}e^{t_1hat{A}} , qquad t~in~mathbb{R}_+ ,end{align}tag{2} $$
the 3rd derivative becomes
$$begin{align} frac{1}{3!}frac{d^3}{dlambda^3}e^{that{A}}
&~=~iiiint_{mathbb{R}^4_+}!dt_1~dt_2~dt_3~dt_4~delta(t!-!t_1!-!t_2!-!t_3!-!t_4)~ e^{t_4hat{A}}frac{dhat{A}}{dlambda}e^{t_3hat{A}}frac{dhat{A}}{dlambda}e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} cr
&~+~iiint_{mathbb{R}^3_+}!dt_1~dt_2~dt_3~delta(t!-!t_1!-!t_2!-!t_3)~ e^{t_3hat{A}}frac{dhat{A}}{dlambda}e^{t_2hat{A}}frac{1}{2!}frac{d^2hat{A}}{dlambda^2}e^{t_1hat{A}} cr
&~+~iiint_{mathbb{R}^3_+}!dt_1~dt_2~dt_3~delta(t!-!t_1!-!t_2!-!t_3)~ e^{t_3hat{A}}frac{1}{2!}frac{d^2hat{A}}{dlambda^2}e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} cr
&~+~ iint_{mathbb{R}^2_+}!dt_1~dt_2~delta(t!-!t_1!-!t_2)~ e^{t_2hat{A}}frac{1}{3!}frac{d^3hat{A}}{dlambda^3}e^{t_1hat{A}} , qquad t~in~mathbb{R}_+ ,end{align}tag{3} $$
and so forth. The $N$th derivative $$frac{1}{N!}frac{d^N}{dlambda^N}e^{that{A}}~=~sumstackrel{t_{n+1}}{rule{1cm}{.5mm}}fbox{$k_n$}stackrel{t_n}{rule{1cm}{.5mm}}cdots stackrel{t_3}{rule{1cm}{.5mm}}fbox{$k_2$}stackrel{t_2}{rule{1cm}{.5mm}}fbox{$k_1$}stackrel{t_1}{rule{1cm}{.5mm}}tag{N}$$
is a sum of possible Feynman diagrams with Schwinger propagators $$stackrel{t_i}{rule{1cm}{.5mm}}~=~e^{t_ihat{A}}, qquad t_i~in~mathbb{R}_+,tag{P}$$
and 2-vertices $$fbox{$k_i$}~=~frac{1}{k_i!}frac{d^{k_i}hat{A}}{dlambda^{k_i}}, qquad k_i~in~mathbb{N}.tag{V}$$ Each diagram in the sum has weight 1.
$endgroup$
Hint: Use repeatedly the identity for the 1st derivative
$$ frac{d}{dlambda}e^{that{A}} ~=~ int_0^t!dt_1~ e^{(t-t_1)hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}}~=~ iint_{mathbb{R}^2_+}!dt_1~dt_2~delta(t!-!t_1!-!t_2)~ e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} , qquad t~in~mathbb{R}_+ .tag{1} $$
For a proof of eq. (1) see e.g. my Phys.SE answer here. Then the 2nd derivative becomes
$$begin{align} frac{1}{2!}frac{d^2}{dlambda^2}e^{that{A}}
&~=~iiint_{mathbb{R}^3_+}!dt_1~dt_2~dt_3~delta(t!-!t_1!-!t_2!-!t_3)~ e^{t_3hat{A}}frac{dhat{A}}{dlambda}e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} cr
&~+~ iint_{mathbb{R}^2_+}!dt_1~dt_2~delta(t!-!t_1!-!t_2)~ e^{t_2hat{A}}frac{1}{2!}frac{d^2hat{A}}{dlambda^2}e^{t_1hat{A}} , qquad t~in~mathbb{R}_+ ,end{align}tag{2} $$
the 3rd derivative becomes
$$begin{align} frac{1}{3!}frac{d^3}{dlambda^3}e^{that{A}}
&~=~iiiint_{mathbb{R}^4_+}!dt_1~dt_2~dt_3~dt_4~delta(t!-!t_1!-!t_2!-!t_3!-!t_4)~ e^{t_4hat{A}}frac{dhat{A}}{dlambda}e^{t_3hat{A}}frac{dhat{A}}{dlambda}e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} cr
&~+~iiint_{mathbb{R}^3_+}!dt_1~dt_2~dt_3~delta(t!-!t_1!-!t_2!-!t_3)~ e^{t_3hat{A}}frac{dhat{A}}{dlambda}e^{t_2hat{A}}frac{1}{2!}frac{d^2hat{A}}{dlambda^2}e^{t_1hat{A}} cr
&~+~iiint_{mathbb{R}^3_+}!dt_1~dt_2~dt_3~delta(t!-!t_1!-!t_2!-!t_3)~ e^{t_3hat{A}}frac{1}{2!}frac{d^2hat{A}}{dlambda^2}e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} cr
&~+~ iint_{mathbb{R}^2_+}!dt_1~dt_2~delta(t!-!t_1!-!t_2)~ e^{t_2hat{A}}frac{1}{3!}frac{d^3hat{A}}{dlambda^3}e^{t_1hat{A}} , qquad t~in~mathbb{R}_+ ,end{align}tag{3} $$
and so forth. The $N$th derivative $$frac{1}{N!}frac{d^N}{dlambda^N}e^{that{A}}~=~sumstackrel{t_{n+1}}{rule{1cm}{.5mm}}fbox{$k_n$}stackrel{t_n}{rule{1cm}{.5mm}}cdots stackrel{t_3}{rule{1cm}{.5mm}}fbox{$k_2$}stackrel{t_2}{rule{1cm}{.5mm}}fbox{$k_1$}stackrel{t_1}{rule{1cm}{.5mm}}tag{N}$$
is a sum of possible Feynman diagrams with Schwinger propagators $$stackrel{t_i}{rule{1cm}{.5mm}}~=~e^{t_ihat{A}}, qquad t_i~in~mathbb{R}_+,tag{P}$$
and 2-vertices $$fbox{$k_i$}~=~frac{1}{k_i!}frac{d^{k_i}hat{A}}{dlambda^{k_i}}, qquad k_i~in~mathbb{N}.tag{V}$$ Each diagram in the sum has weight 1.
edited Feb 23 at 14:21
answered Feb 20 at 11:16
Qmechanic♦Qmechanic
105k121901203
105k121901203
$begingroup$
That's horrifying.
$endgroup$
– Emilio Pisanty
Feb 21 at 18:17
1
$begingroup$
Indeed a computational nighmare. But there is beauty behind the madness.
$endgroup$
– Qmechanic♦
Feb 23 at 13:28
$begingroup$
The problem with that is that you need to get through the madness to get to the beauty.
$endgroup$
– Emilio Pisanty
Feb 23 at 13:30
$begingroup$
$uparrow$ Ha-ha.
$endgroup$
– Qmechanic♦
Feb 23 at 14:20
add a comment |
$begingroup$
That's horrifying.
$endgroup$
– Emilio Pisanty
Feb 21 at 18:17
1
$begingroup$
Indeed a computational nighmare. But there is beauty behind the madness.
$endgroup$
– Qmechanic♦
Feb 23 at 13:28
$begingroup$
The problem with that is that you need to get through the madness to get to the beauty.
$endgroup$
– Emilio Pisanty
Feb 23 at 13:30
$begingroup$
$uparrow$ Ha-ha.
$endgroup$
– Qmechanic♦
Feb 23 at 14:20
$begingroup$
That's horrifying.
$endgroup$
– Emilio Pisanty
Feb 21 at 18:17
$begingroup$
That's horrifying.
$endgroup$
– Emilio Pisanty
Feb 21 at 18:17
1
1
$begingroup$
Indeed a computational nighmare. But there is beauty behind the madness.
$endgroup$
– Qmechanic♦
Feb 23 at 13:28
$begingroup$
Indeed a computational nighmare. But there is beauty behind the madness.
$endgroup$
– Qmechanic♦
Feb 23 at 13:28
$begingroup$
The problem with that is that you need to get through the madness to get to the beauty.
$endgroup$
– Emilio Pisanty
Feb 23 at 13:30
$begingroup$
The problem with that is that you need to get through the madness to get to the beauty.
$endgroup$
– Emilio Pisanty
Feb 23 at 13:30
$begingroup$
$uparrow$ Ha-ha.
$endgroup$
– Qmechanic♦
Feb 23 at 14:20
$begingroup$
$uparrow$ Ha-ha.
$endgroup$
– Qmechanic♦
Feb 23 at 14:20
add a comment |
Thanks for contributing an answer to Physics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f461860%2fgeneral-derivative-of-the-exponential-operator-w-r-t-a-parameter%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
WP.
$endgroup$
– Cosmas Zachos
Feb 20 at 12:15