Having trouble computing $int_3^5frac{t}{1+0.1t} dt $
$begingroup$
$$int_3^5frac{t}{1+0.1t} dt $$
For some reason this is equal to:
1/0.1 (2 - (1/0.1 (ln1.5 - ln1.3)))
I have no idea how to reduce to that.
integration definite-integrals
$endgroup$
add a comment |
$begingroup$
$$int_3^5frac{t}{1+0.1t} dt $$
For some reason this is equal to:
1/0.1 (2 - (1/0.1 (ln1.5 - ln1.3)))
I have no idea how to reduce to that.
integration definite-integrals
$endgroup$
$begingroup$
If you let $x=1+0.1t$, then $t=10x-10$...
$endgroup$
– Eleven-Eleven
Feb 18 at 13:53
$begingroup$
Do you mean $$int_{3}^{5}frac{t}{1+frac{1}{10}t}dt$$?
$endgroup$
– Dr. Sonnhard Graubner
Feb 18 at 13:54
$begingroup$
This is not an improper integral, by the way. So, I removed that tag.
$endgroup$
– Michael Rybkin
Feb 18 at 14:29
add a comment |
$begingroup$
$$int_3^5frac{t}{1+0.1t} dt $$
For some reason this is equal to:
1/0.1 (2 - (1/0.1 (ln1.5 - ln1.3)))
I have no idea how to reduce to that.
integration definite-integrals
$endgroup$
$$int_3^5frac{t}{1+0.1t} dt $$
For some reason this is equal to:
1/0.1 (2 - (1/0.1 (ln1.5 - ln1.3)))
I have no idea how to reduce to that.
integration definite-integrals
integration definite-integrals
edited Feb 20 at 2:20
Michael Rybkin
2,833416
2,833416
asked Feb 18 at 13:51
ximxim
516
516
$begingroup$
If you let $x=1+0.1t$, then $t=10x-10$...
$endgroup$
– Eleven-Eleven
Feb 18 at 13:53
$begingroup$
Do you mean $$int_{3}^{5}frac{t}{1+frac{1}{10}t}dt$$?
$endgroup$
– Dr. Sonnhard Graubner
Feb 18 at 13:54
$begingroup$
This is not an improper integral, by the way. So, I removed that tag.
$endgroup$
– Michael Rybkin
Feb 18 at 14:29
add a comment |
$begingroup$
If you let $x=1+0.1t$, then $t=10x-10$...
$endgroup$
– Eleven-Eleven
Feb 18 at 13:53
$begingroup$
Do you mean $$int_{3}^{5}frac{t}{1+frac{1}{10}t}dt$$?
$endgroup$
– Dr. Sonnhard Graubner
Feb 18 at 13:54
$begingroup$
This is not an improper integral, by the way. So, I removed that tag.
$endgroup$
– Michael Rybkin
Feb 18 at 14:29
$begingroup$
If you let $x=1+0.1t$, then $t=10x-10$...
$endgroup$
– Eleven-Eleven
Feb 18 at 13:53
$begingroup$
If you let $x=1+0.1t$, then $t=10x-10$...
$endgroup$
– Eleven-Eleven
Feb 18 at 13:53
$begingroup$
Do you mean $$int_{3}^{5}frac{t}{1+frac{1}{10}t}dt$$?
$endgroup$
– Dr. Sonnhard Graubner
Feb 18 at 13:54
$begingroup$
Do you mean $$int_{3}^{5}frac{t}{1+frac{1}{10}t}dt$$?
$endgroup$
– Dr. Sonnhard Graubner
Feb 18 at 13:54
$begingroup$
This is not an improper integral, by the way. So, I removed that tag.
$endgroup$
– Michael Rybkin
Feb 18 at 14:29
$begingroup$
This is not an improper integral, by the way. So, I removed that tag.
$endgroup$
– Michael Rybkin
Feb 18 at 14:29
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint:
$$frac{t}{1+0.1t} = frac{10cdot(1+0.1t) - 10}{1+0.1t} = 10 - frac{10}{1+0.1t}$$
$endgroup$
add a comment |
$begingroup$
$$
frac{x}{1+0.1x}=frac{x}{1+0.1x}cdotfrac{10}{10}=
frac{10x}{10+x}=10left(frac{x}{10+x}right)=\
10left(frac{-10+10+x}{10+x}right)=
10left(frac{-10}{10+x}+frac{10+x}{10+x}right)=
10left(-frac{10}{10+x}+1right)=\
10left(1-frac{10}{10+x}right)=10-frac{100}{10+x}.
$$
$$
intleft(10-frac{100}{10+x}right),dx=
10int,dx-100intfrac{1}{10+x}frac{d}{dx}(10+x),dx=\
10x-100intfrac{1}{10+x},d(10+x)=
10x-100ln{|10+x|}+C.
$$
$$
int_3^5frac{t}{1+0.1t},dt=
bigg[10t-100ln{|10+t|}bigg]_3^5=\
50-100ln{15}-(30-100ln{13})=
20-100ln{15}+100ln{13}=\
20-100(ln{15}-ln{13})=20-100ln{frac{15}{13}}.
$$
The answer you gave is equivalent to what I got:
$$
frac{1}{0.1}left(2-frac{1}{0.1}left[ln{1.5}-ln{1.3}right]right)=
10left(2-10left[ln{frac{15}{10}}-ln{frac{13}{10}}right]right)=\
20-100ln{left(frac{15}{10}divfrac{13}{10}right)}=
20-100ln{frac{15}{13}}.
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3117611%2fhaving-trouble-computing-int-35-fract10-1t-dt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:
$$frac{t}{1+0.1t} = frac{10cdot(1+0.1t) - 10}{1+0.1t} = 10 - frac{10}{1+0.1t}$$
$endgroup$
add a comment |
$begingroup$
Hint:
$$frac{t}{1+0.1t} = frac{10cdot(1+0.1t) - 10}{1+0.1t} = 10 - frac{10}{1+0.1t}$$
$endgroup$
add a comment |
$begingroup$
Hint:
$$frac{t}{1+0.1t} = frac{10cdot(1+0.1t) - 10}{1+0.1t} = 10 - frac{10}{1+0.1t}$$
$endgroup$
Hint:
$$frac{t}{1+0.1t} = frac{10cdot(1+0.1t) - 10}{1+0.1t} = 10 - frac{10}{1+0.1t}$$
answered Feb 18 at 13:53
5xum5xum
91.1k394161
91.1k394161
add a comment |
add a comment |
$begingroup$
$$
frac{x}{1+0.1x}=frac{x}{1+0.1x}cdotfrac{10}{10}=
frac{10x}{10+x}=10left(frac{x}{10+x}right)=\
10left(frac{-10+10+x}{10+x}right)=
10left(frac{-10}{10+x}+frac{10+x}{10+x}right)=
10left(-frac{10}{10+x}+1right)=\
10left(1-frac{10}{10+x}right)=10-frac{100}{10+x}.
$$
$$
intleft(10-frac{100}{10+x}right),dx=
10int,dx-100intfrac{1}{10+x}frac{d}{dx}(10+x),dx=\
10x-100intfrac{1}{10+x},d(10+x)=
10x-100ln{|10+x|}+C.
$$
$$
int_3^5frac{t}{1+0.1t},dt=
bigg[10t-100ln{|10+t|}bigg]_3^5=\
50-100ln{15}-(30-100ln{13})=
20-100ln{15}+100ln{13}=\
20-100(ln{15}-ln{13})=20-100ln{frac{15}{13}}.
$$
The answer you gave is equivalent to what I got:
$$
frac{1}{0.1}left(2-frac{1}{0.1}left[ln{1.5}-ln{1.3}right]right)=
10left(2-10left[ln{frac{15}{10}}-ln{frac{13}{10}}right]right)=\
20-100ln{left(frac{15}{10}divfrac{13}{10}right)}=
20-100ln{frac{15}{13}}.
$$
$endgroup$
add a comment |
$begingroup$
$$
frac{x}{1+0.1x}=frac{x}{1+0.1x}cdotfrac{10}{10}=
frac{10x}{10+x}=10left(frac{x}{10+x}right)=\
10left(frac{-10+10+x}{10+x}right)=
10left(frac{-10}{10+x}+frac{10+x}{10+x}right)=
10left(-frac{10}{10+x}+1right)=\
10left(1-frac{10}{10+x}right)=10-frac{100}{10+x}.
$$
$$
intleft(10-frac{100}{10+x}right),dx=
10int,dx-100intfrac{1}{10+x}frac{d}{dx}(10+x),dx=\
10x-100intfrac{1}{10+x},d(10+x)=
10x-100ln{|10+x|}+C.
$$
$$
int_3^5frac{t}{1+0.1t},dt=
bigg[10t-100ln{|10+t|}bigg]_3^5=\
50-100ln{15}-(30-100ln{13})=
20-100ln{15}+100ln{13}=\
20-100(ln{15}-ln{13})=20-100ln{frac{15}{13}}.
$$
The answer you gave is equivalent to what I got:
$$
frac{1}{0.1}left(2-frac{1}{0.1}left[ln{1.5}-ln{1.3}right]right)=
10left(2-10left[ln{frac{15}{10}}-ln{frac{13}{10}}right]right)=\
20-100ln{left(frac{15}{10}divfrac{13}{10}right)}=
20-100ln{frac{15}{13}}.
$$
$endgroup$
add a comment |
$begingroup$
$$
frac{x}{1+0.1x}=frac{x}{1+0.1x}cdotfrac{10}{10}=
frac{10x}{10+x}=10left(frac{x}{10+x}right)=\
10left(frac{-10+10+x}{10+x}right)=
10left(frac{-10}{10+x}+frac{10+x}{10+x}right)=
10left(-frac{10}{10+x}+1right)=\
10left(1-frac{10}{10+x}right)=10-frac{100}{10+x}.
$$
$$
intleft(10-frac{100}{10+x}right),dx=
10int,dx-100intfrac{1}{10+x}frac{d}{dx}(10+x),dx=\
10x-100intfrac{1}{10+x},d(10+x)=
10x-100ln{|10+x|}+C.
$$
$$
int_3^5frac{t}{1+0.1t},dt=
bigg[10t-100ln{|10+t|}bigg]_3^5=\
50-100ln{15}-(30-100ln{13})=
20-100ln{15}+100ln{13}=\
20-100(ln{15}-ln{13})=20-100ln{frac{15}{13}}.
$$
The answer you gave is equivalent to what I got:
$$
frac{1}{0.1}left(2-frac{1}{0.1}left[ln{1.5}-ln{1.3}right]right)=
10left(2-10left[ln{frac{15}{10}}-ln{frac{13}{10}}right]right)=\
20-100ln{left(frac{15}{10}divfrac{13}{10}right)}=
20-100ln{frac{15}{13}}.
$$
$endgroup$
$$
frac{x}{1+0.1x}=frac{x}{1+0.1x}cdotfrac{10}{10}=
frac{10x}{10+x}=10left(frac{x}{10+x}right)=\
10left(frac{-10+10+x}{10+x}right)=
10left(frac{-10}{10+x}+frac{10+x}{10+x}right)=
10left(-frac{10}{10+x}+1right)=\
10left(1-frac{10}{10+x}right)=10-frac{100}{10+x}.
$$
$$
intleft(10-frac{100}{10+x}right),dx=
10int,dx-100intfrac{1}{10+x}frac{d}{dx}(10+x),dx=\
10x-100intfrac{1}{10+x},d(10+x)=
10x-100ln{|10+x|}+C.
$$
$$
int_3^5frac{t}{1+0.1t},dt=
bigg[10t-100ln{|10+t|}bigg]_3^5=\
50-100ln{15}-(30-100ln{13})=
20-100ln{15}+100ln{13}=\
20-100(ln{15}-ln{13})=20-100ln{frac{15}{13}}.
$$
The answer you gave is equivalent to what I got:
$$
frac{1}{0.1}left(2-frac{1}{0.1}left[ln{1.5}-ln{1.3}right]right)=
10left(2-10left[ln{frac{15}{10}}-ln{frac{13}{10}}right]right)=\
20-100ln{left(frac{15}{10}divfrac{13}{10}right)}=
20-100ln{frac{15}{13}}.
$$
edited Feb 18 at 14:44
answered Feb 18 at 13:59
Michael RybkinMichael Rybkin
2,833416
2,833416
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3117611%2fhaving-trouble-computing-int-35-fract10-1t-dt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
If you let $x=1+0.1t$, then $t=10x-10$...
$endgroup$
– Eleven-Eleven
Feb 18 at 13:53
$begingroup$
Do you mean $$int_{3}^{5}frac{t}{1+frac{1}{10}t}dt$$?
$endgroup$
– Dr. Sonnhard Graubner
Feb 18 at 13:54
$begingroup$
This is not an improper integral, by the way. So, I removed that tag.
$endgroup$
– Michael Rybkin
Feb 18 at 14:29