Having trouble computing $int_3^5frac{t}{1+0.1t} dt $












1












$begingroup$


$$int_3^5frac{t}{1+0.1t} dt $$



For some reason this is equal to:




1/0.1 (2 - (1/0.1 (ln1.5 - ln1.3)))




I have no idea how to reduce to that.










share|cite|improve this question











$endgroup$












  • $begingroup$
    If you let $x=1+0.1t$, then $t=10x-10$...
    $endgroup$
    – Eleven-Eleven
    Feb 18 at 13:53












  • $begingroup$
    Do you mean $$int_{3}^{5}frac{t}{1+frac{1}{10}t}dt$$?
    $endgroup$
    – Dr. Sonnhard Graubner
    Feb 18 at 13:54










  • $begingroup$
    This is not an improper integral, by the way. So, I removed that tag.
    $endgroup$
    – Michael Rybkin
    Feb 18 at 14:29


















1












$begingroup$


$$int_3^5frac{t}{1+0.1t} dt $$



For some reason this is equal to:




1/0.1 (2 - (1/0.1 (ln1.5 - ln1.3)))




I have no idea how to reduce to that.










share|cite|improve this question











$endgroup$












  • $begingroup$
    If you let $x=1+0.1t$, then $t=10x-10$...
    $endgroup$
    – Eleven-Eleven
    Feb 18 at 13:53












  • $begingroup$
    Do you mean $$int_{3}^{5}frac{t}{1+frac{1}{10}t}dt$$?
    $endgroup$
    – Dr. Sonnhard Graubner
    Feb 18 at 13:54










  • $begingroup$
    This is not an improper integral, by the way. So, I removed that tag.
    $endgroup$
    – Michael Rybkin
    Feb 18 at 14:29
















1












1








1





$begingroup$


$$int_3^5frac{t}{1+0.1t} dt $$



For some reason this is equal to:




1/0.1 (2 - (1/0.1 (ln1.5 - ln1.3)))




I have no idea how to reduce to that.










share|cite|improve this question











$endgroup$




$$int_3^5frac{t}{1+0.1t} dt $$



For some reason this is equal to:




1/0.1 (2 - (1/0.1 (ln1.5 - ln1.3)))




I have no idea how to reduce to that.







integration definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 20 at 2:20









Michael Rybkin

2,833416




2,833416










asked Feb 18 at 13:51









ximxim

516




516












  • $begingroup$
    If you let $x=1+0.1t$, then $t=10x-10$...
    $endgroup$
    – Eleven-Eleven
    Feb 18 at 13:53












  • $begingroup$
    Do you mean $$int_{3}^{5}frac{t}{1+frac{1}{10}t}dt$$?
    $endgroup$
    – Dr. Sonnhard Graubner
    Feb 18 at 13:54










  • $begingroup$
    This is not an improper integral, by the way. So, I removed that tag.
    $endgroup$
    – Michael Rybkin
    Feb 18 at 14:29




















  • $begingroup$
    If you let $x=1+0.1t$, then $t=10x-10$...
    $endgroup$
    – Eleven-Eleven
    Feb 18 at 13:53












  • $begingroup$
    Do you mean $$int_{3}^{5}frac{t}{1+frac{1}{10}t}dt$$?
    $endgroup$
    – Dr. Sonnhard Graubner
    Feb 18 at 13:54










  • $begingroup$
    This is not an improper integral, by the way. So, I removed that tag.
    $endgroup$
    – Michael Rybkin
    Feb 18 at 14:29


















$begingroup$
If you let $x=1+0.1t$, then $t=10x-10$...
$endgroup$
– Eleven-Eleven
Feb 18 at 13:53






$begingroup$
If you let $x=1+0.1t$, then $t=10x-10$...
$endgroup$
– Eleven-Eleven
Feb 18 at 13:53














$begingroup$
Do you mean $$int_{3}^{5}frac{t}{1+frac{1}{10}t}dt$$?
$endgroup$
– Dr. Sonnhard Graubner
Feb 18 at 13:54




$begingroup$
Do you mean $$int_{3}^{5}frac{t}{1+frac{1}{10}t}dt$$?
$endgroup$
– Dr. Sonnhard Graubner
Feb 18 at 13:54












$begingroup$
This is not an improper integral, by the way. So, I removed that tag.
$endgroup$
– Michael Rybkin
Feb 18 at 14:29






$begingroup$
This is not an improper integral, by the way. So, I removed that tag.
$endgroup$
– Michael Rybkin
Feb 18 at 14:29












2 Answers
2






active

oldest

votes


















6












$begingroup$

Hint:



$$frac{t}{1+0.1t} = frac{10cdot(1+0.1t) - 10}{1+0.1t} = 10 - frac{10}{1+0.1t}$$






share|cite|improve this answer









$endgroup$





















    3












    $begingroup$

    $$
    frac{x}{1+0.1x}=frac{x}{1+0.1x}cdotfrac{10}{10}=
    frac{10x}{10+x}=10left(frac{x}{10+x}right)=\
    10left(frac{-10+10+x}{10+x}right)=
    10left(frac{-10}{10+x}+frac{10+x}{10+x}right)=
    10left(-frac{10}{10+x}+1right)=\
    10left(1-frac{10}{10+x}right)=10-frac{100}{10+x}.
    $$




    $$
    intleft(10-frac{100}{10+x}right),dx=
    10int,dx-100intfrac{1}{10+x}frac{d}{dx}(10+x),dx=\
    10x-100intfrac{1}{10+x},d(10+x)=
    10x-100ln{|10+x|}+C.
    $$



    $$
    int_3^5frac{t}{1+0.1t},dt=
    bigg[10t-100ln{|10+t|}bigg]_3^5=\
    50-100ln{15}-(30-100ln{13})=
    20-100ln{15}+100ln{13}=\
    20-100(ln{15}-ln{13})=20-100ln{frac{15}{13}}.
    $$



    The answer you gave is equivalent to what I got:
    $$
    frac{1}{0.1}left(2-frac{1}{0.1}left[ln{1.5}-ln{1.3}right]right)=
    10left(2-10left[ln{frac{15}{10}}-ln{frac{13}{10}}right]right)=\
    20-100ln{left(frac{15}{10}divfrac{13}{10}right)}=
    20-100ln{frac{15}{13}}.
    $$





    share|cite|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3117611%2fhaving-trouble-computing-int-35-fract10-1t-dt%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      6












      $begingroup$

      Hint:



      $$frac{t}{1+0.1t} = frac{10cdot(1+0.1t) - 10}{1+0.1t} = 10 - frac{10}{1+0.1t}$$






      share|cite|improve this answer









      $endgroup$


















        6












        $begingroup$

        Hint:



        $$frac{t}{1+0.1t} = frac{10cdot(1+0.1t) - 10}{1+0.1t} = 10 - frac{10}{1+0.1t}$$






        share|cite|improve this answer









        $endgroup$
















          6












          6








          6





          $begingroup$

          Hint:



          $$frac{t}{1+0.1t} = frac{10cdot(1+0.1t) - 10}{1+0.1t} = 10 - frac{10}{1+0.1t}$$






          share|cite|improve this answer









          $endgroup$



          Hint:



          $$frac{t}{1+0.1t} = frac{10cdot(1+0.1t) - 10}{1+0.1t} = 10 - frac{10}{1+0.1t}$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Feb 18 at 13:53









          5xum5xum

          91.1k394161




          91.1k394161























              3












              $begingroup$

              $$
              frac{x}{1+0.1x}=frac{x}{1+0.1x}cdotfrac{10}{10}=
              frac{10x}{10+x}=10left(frac{x}{10+x}right)=\
              10left(frac{-10+10+x}{10+x}right)=
              10left(frac{-10}{10+x}+frac{10+x}{10+x}right)=
              10left(-frac{10}{10+x}+1right)=\
              10left(1-frac{10}{10+x}right)=10-frac{100}{10+x}.
              $$




              $$
              intleft(10-frac{100}{10+x}right),dx=
              10int,dx-100intfrac{1}{10+x}frac{d}{dx}(10+x),dx=\
              10x-100intfrac{1}{10+x},d(10+x)=
              10x-100ln{|10+x|}+C.
              $$



              $$
              int_3^5frac{t}{1+0.1t},dt=
              bigg[10t-100ln{|10+t|}bigg]_3^5=\
              50-100ln{15}-(30-100ln{13})=
              20-100ln{15}+100ln{13}=\
              20-100(ln{15}-ln{13})=20-100ln{frac{15}{13}}.
              $$



              The answer you gave is equivalent to what I got:
              $$
              frac{1}{0.1}left(2-frac{1}{0.1}left[ln{1.5}-ln{1.3}right]right)=
              10left(2-10left[ln{frac{15}{10}}-ln{frac{13}{10}}right]right)=\
              20-100ln{left(frac{15}{10}divfrac{13}{10}right)}=
              20-100ln{frac{15}{13}}.
              $$





              share|cite|improve this answer











              $endgroup$


















                3












                $begingroup$

                $$
                frac{x}{1+0.1x}=frac{x}{1+0.1x}cdotfrac{10}{10}=
                frac{10x}{10+x}=10left(frac{x}{10+x}right)=\
                10left(frac{-10+10+x}{10+x}right)=
                10left(frac{-10}{10+x}+frac{10+x}{10+x}right)=
                10left(-frac{10}{10+x}+1right)=\
                10left(1-frac{10}{10+x}right)=10-frac{100}{10+x}.
                $$




                $$
                intleft(10-frac{100}{10+x}right),dx=
                10int,dx-100intfrac{1}{10+x}frac{d}{dx}(10+x),dx=\
                10x-100intfrac{1}{10+x},d(10+x)=
                10x-100ln{|10+x|}+C.
                $$



                $$
                int_3^5frac{t}{1+0.1t},dt=
                bigg[10t-100ln{|10+t|}bigg]_3^5=\
                50-100ln{15}-(30-100ln{13})=
                20-100ln{15}+100ln{13}=\
                20-100(ln{15}-ln{13})=20-100ln{frac{15}{13}}.
                $$



                The answer you gave is equivalent to what I got:
                $$
                frac{1}{0.1}left(2-frac{1}{0.1}left[ln{1.5}-ln{1.3}right]right)=
                10left(2-10left[ln{frac{15}{10}}-ln{frac{13}{10}}right]right)=\
                20-100ln{left(frac{15}{10}divfrac{13}{10}right)}=
                20-100ln{frac{15}{13}}.
                $$





                share|cite|improve this answer











                $endgroup$
















                  3












                  3








                  3





                  $begingroup$

                  $$
                  frac{x}{1+0.1x}=frac{x}{1+0.1x}cdotfrac{10}{10}=
                  frac{10x}{10+x}=10left(frac{x}{10+x}right)=\
                  10left(frac{-10+10+x}{10+x}right)=
                  10left(frac{-10}{10+x}+frac{10+x}{10+x}right)=
                  10left(-frac{10}{10+x}+1right)=\
                  10left(1-frac{10}{10+x}right)=10-frac{100}{10+x}.
                  $$




                  $$
                  intleft(10-frac{100}{10+x}right),dx=
                  10int,dx-100intfrac{1}{10+x}frac{d}{dx}(10+x),dx=\
                  10x-100intfrac{1}{10+x},d(10+x)=
                  10x-100ln{|10+x|}+C.
                  $$



                  $$
                  int_3^5frac{t}{1+0.1t},dt=
                  bigg[10t-100ln{|10+t|}bigg]_3^5=\
                  50-100ln{15}-(30-100ln{13})=
                  20-100ln{15}+100ln{13}=\
                  20-100(ln{15}-ln{13})=20-100ln{frac{15}{13}}.
                  $$



                  The answer you gave is equivalent to what I got:
                  $$
                  frac{1}{0.1}left(2-frac{1}{0.1}left[ln{1.5}-ln{1.3}right]right)=
                  10left(2-10left[ln{frac{15}{10}}-ln{frac{13}{10}}right]right)=\
                  20-100ln{left(frac{15}{10}divfrac{13}{10}right)}=
                  20-100ln{frac{15}{13}}.
                  $$





                  share|cite|improve this answer











                  $endgroup$



                  $$
                  frac{x}{1+0.1x}=frac{x}{1+0.1x}cdotfrac{10}{10}=
                  frac{10x}{10+x}=10left(frac{x}{10+x}right)=\
                  10left(frac{-10+10+x}{10+x}right)=
                  10left(frac{-10}{10+x}+frac{10+x}{10+x}right)=
                  10left(-frac{10}{10+x}+1right)=\
                  10left(1-frac{10}{10+x}right)=10-frac{100}{10+x}.
                  $$




                  $$
                  intleft(10-frac{100}{10+x}right),dx=
                  10int,dx-100intfrac{1}{10+x}frac{d}{dx}(10+x),dx=\
                  10x-100intfrac{1}{10+x},d(10+x)=
                  10x-100ln{|10+x|}+C.
                  $$



                  $$
                  int_3^5frac{t}{1+0.1t},dt=
                  bigg[10t-100ln{|10+t|}bigg]_3^5=\
                  50-100ln{15}-(30-100ln{13})=
                  20-100ln{15}+100ln{13}=\
                  20-100(ln{15}-ln{13})=20-100ln{frac{15}{13}}.
                  $$



                  The answer you gave is equivalent to what I got:
                  $$
                  frac{1}{0.1}left(2-frac{1}{0.1}left[ln{1.5}-ln{1.3}right]right)=
                  10left(2-10left[ln{frac{15}{10}}-ln{frac{13}{10}}right]right)=\
                  20-100ln{left(frac{15}{10}divfrac{13}{10}right)}=
                  20-100ln{frac{15}{13}}.
                  $$






                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Feb 18 at 14:44

























                  answered Feb 18 at 13:59









                  Michael RybkinMichael Rybkin

                  2,833416




                  2,833416






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3117611%2fhaving-trouble-computing-int-35-fract10-1t-dt%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      How to change which sound is reproduced for terminal bell?

                      Can I use Tabulator js library in my java Spring + Thymeleaf project?

                      Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents