Calculating expectations of concentrated random variables of bounded-differences type












0












$begingroup$


Is there a nice general way of calculating the expectation variable for which I can derive concentration bounds using the method of bounded differences?



I have seen quite a few application of the Chernoff-Hoeffding inequality and it was always rather easy to compute the expectation that the random variable was concentrated around.



I was reading about the Azuma's inequality and the method of bounded differences and it seems to me that it can often be quite difficult to compute the expectation. For example, I have seen a very short proof of concentration of the chromatic number in random graphs using the edge exposure martingales. How do I get the expected value?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Is there a nice general way of calculating the expectation variable for which I can derive concentration bounds using the method of bounded differences?



    I have seen quite a few application of the Chernoff-Hoeffding inequality and it was always rather easy to compute the expectation that the random variable was concentrated around.



    I was reading about the Azuma's inequality and the method of bounded differences and it seems to me that it can often be quite difficult to compute the expectation. For example, I have seen a very short proof of concentration of the chromatic number in random graphs using the edge exposure martingales. How do I get the expected value?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Is there a nice general way of calculating the expectation variable for which I can derive concentration bounds using the method of bounded differences?



      I have seen quite a few application of the Chernoff-Hoeffding inequality and it was always rather easy to compute the expectation that the random variable was concentrated around.



      I was reading about the Azuma's inequality and the method of bounded differences and it seems to me that it can often be quite difficult to compute the expectation. For example, I have seen a very short proof of concentration of the chromatic number in random graphs using the edge exposure martingales. How do I get the expected value?










      share|cite|improve this question









      $endgroup$




      Is there a nice general way of calculating the expectation variable for which I can derive concentration bounds using the method of bounded differences?



      I have seen quite a few application of the Chernoff-Hoeffding inequality and it was always rather easy to compute the expectation that the random variable was concentrated around.



      I was reading about the Azuma's inequality and the method of bounded differences and it seems to me that it can often be quite difficult to compute the expectation. For example, I have seen a very short proof of concentration of the chromatic number in random graphs using the edge exposure martingales. How do I get the expected value?







      inequality random-variables random expected-value concentration-of-measure






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 4 '18 at 10:20









      user2316602user2316602

      286




      286






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025391%2fcalculating-expectations-of-concentrated-random-variables-of-bounded-differences%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025391%2fcalculating-expectations-of-concentrated-random-variables-of-bounded-differences%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How to change which sound is reproduced for terminal bell?

          Can I use Tabulator js library in my java Spring + Thymeleaf project?

          Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents