How to find the harmonic conjugate of $v(x,y)=log((x-1)^2 +(y-2)^2)$?












0














So I have found out $$frac{partial v}{partial x} = frac{2x-2}{(x-1)^2 +(y-2)^2}, frac{partial v}{partial y} = frac{2y-4}{(x-1)^2 +(y-2)^2}.$$



Using the Cauchy Riemann equations, I find:
$$frac{partial u}{partial x} = frac{2y-4}{(x-1)^2 +(y-2)^2}, frac{partial u}{partial y} = frac{2-2x}{(x-1)^2 +(y-2)^2}.$$



Then I integrate either one of $partial u/partial x$ or $partial u/partial y$ to then differentiate with respect to the other variable I just integrated with. However, when I integrate $partial u/partial x$ or $partial u/partial y$, I get two different functions: $2arctanfrac{(x-1)}{(y-2)} + g(y)$ and $-2arctanfrac{(y-2)}{(x-1)} + g(x)$, respectively.



What am I doing wrong? Can you have multiple harmonic conjuguates?










share|cite|improve this question





























    0














    So I have found out $$frac{partial v}{partial x} = frac{2x-2}{(x-1)^2 +(y-2)^2}, frac{partial v}{partial y} = frac{2y-4}{(x-1)^2 +(y-2)^2}.$$



    Using the Cauchy Riemann equations, I find:
    $$frac{partial u}{partial x} = frac{2y-4}{(x-1)^2 +(y-2)^2}, frac{partial u}{partial y} = frac{2-2x}{(x-1)^2 +(y-2)^2}.$$



    Then I integrate either one of $partial u/partial x$ or $partial u/partial y$ to then differentiate with respect to the other variable I just integrated with. However, when I integrate $partial u/partial x$ or $partial u/partial y$, I get two different functions: $2arctanfrac{(x-1)}{(y-2)} + g(y)$ and $-2arctanfrac{(y-2)}{(x-1)} + g(x)$, respectively.



    What am I doing wrong? Can you have multiple harmonic conjuguates?










    share|cite|improve this question



























      0












      0








      0







      So I have found out $$frac{partial v}{partial x} = frac{2x-2}{(x-1)^2 +(y-2)^2}, frac{partial v}{partial y} = frac{2y-4}{(x-1)^2 +(y-2)^2}.$$



      Using the Cauchy Riemann equations, I find:
      $$frac{partial u}{partial x} = frac{2y-4}{(x-1)^2 +(y-2)^2}, frac{partial u}{partial y} = frac{2-2x}{(x-1)^2 +(y-2)^2}.$$



      Then I integrate either one of $partial u/partial x$ or $partial u/partial y$ to then differentiate with respect to the other variable I just integrated with. However, when I integrate $partial u/partial x$ or $partial u/partial y$, I get two different functions: $2arctanfrac{(x-1)}{(y-2)} + g(y)$ and $-2arctanfrac{(y-2)}{(x-1)} + g(x)$, respectively.



      What am I doing wrong? Can you have multiple harmonic conjuguates?










      share|cite|improve this question















      So I have found out $$frac{partial v}{partial x} = frac{2x-2}{(x-1)^2 +(y-2)^2}, frac{partial v}{partial y} = frac{2y-4}{(x-1)^2 +(y-2)^2}.$$



      Using the Cauchy Riemann equations, I find:
      $$frac{partial u}{partial x} = frac{2y-4}{(x-1)^2 +(y-2)^2}, frac{partial u}{partial y} = frac{2-2x}{(x-1)^2 +(y-2)^2}.$$



      Then I integrate either one of $partial u/partial x$ or $partial u/partial y$ to then differentiate with respect to the other variable I just integrated with. However, when I integrate $partial u/partial x$ or $partial u/partial y$, I get two different functions: $2arctanfrac{(x-1)}{(y-2)} + g(y)$ and $-2arctanfrac{(y-2)}{(x-1)} + g(x)$, respectively.



      What am I doing wrong? Can you have multiple harmonic conjuguates?







      complex-analysis harmonic-functions






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 22 '18 at 12:36









      Ennar

      14.4k32343




      14.4k32343










      asked Nov 22 '18 at 11:32









      M. Calculator

      376




      376






















          1 Answer
          1






          active

          oldest

          votes


















          1














          You will not be able to find an harmonic conjugate of $v$ since there is none. That is, there is no function $ucolonmathbb{C}setminus{1+2i}longrightarrowmathbb C$ which is an harmonic conjugate of $v$. You will find a proof here.






          share|cite|improve this answer



















          • 1




            I have deleted my first sentence. On the other hand, I thought that your problem was to find an harmonic conjugate $u$ of $v$. Am I wrong?
            – José Carlos Santos
            Nov 22 '18 at 11:51








          • 1




            No. The fact that $v$ is harmonic only assures that a harmonic conjugate exists localy. But your function is a standard example of function without a global harmonic conjugate.
            – José Carlos Santos
            Nov 22 '18 at 11:56






          • 1




            For each $(x,y)in D_v$ there is an open ball $B$ centered at that point such that $v|_B$ has a harmonic conjugate; that's the meaning of the fact that locally $v$ has a harmonic conjugate. However, there is no harmonic conjugate of $v$ whose domain is $D_v$; that's what it means that there is no harmonic conjugate globally.
            – José Carlos Santos
            Nov 22 '18 at 12:02








          • 1




            Actually, $1+2i$ is a bad choice, since $1+2i$ is the only point outside the domain of $v$. There is no global harmonic conjugate of $v$, but there is one near every point of its domain.
            – José Carlos Santos
            Nov 22 '18 at 12:26






          • 1




            I have no more ways of telling you that $v$ has no harmonic conjugate. I'm off.
            – José Carlos Santos
            Nov 22 '18 at 12:37











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009022%2fhow-to-find-the-harmonic-conjugate-of-vx-y-logx-12-y-22%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1














          You will not be able to find an harmonic conjugate of $v$ since there is none. That is, there is no function $ucolonmathbb{C}setminus{1+2i}longrightarrowmathbb C$ which is an harmonic conjugate of $v$. You will find a proof here.






          share|cite|improve this answer



















          • 1




            I have deleted my first sentence. On the other hand, I thought that your problem was to find an harmonic conjugate $u$ of $v$. Am I wrong?
            – José Carlos Santos
            Nov 22 '18 at 11:51








          • 1




            No. The fact that $v$ is harmonic only assures that a harmonic conjugate exists localy. But your function is a standard example of function without a global harmonic conjugate.
            – José Carlos Santos
            Nov 22 '18 at 11:56






          • 1




            For each $(x,y)in D_v$ there is an open ball $B$ centered at that point such that $v|_B$ has a harmonic conjugate; that's the meaning of the fact that locally $v$ has a harmonic conjugate. However, there is no harmonic conjugate of $v$ whose domain is $D_v$; that's what it means that there is no harmonic conjugate globally.
            – José Carlos Santos
            Nov 22 '18 at 12:02








          • 1




            Actually, $1+2i$ is a bad choice, since $1+2i$ is the only point outside the domain of $v$. There is no global harmonic conjugate of $v$, but there is one near every point of its domain.
            – José Carlos Santos
            Nov 22 '18 at 12:26






          • 1




            I have no more ways of telling you that $v$ has no harmonic conjugate. I'm off.
            – José Carlos Santos
            Nov 22 '18 at 12:37
















          1














          You will not be able to find an harmonic conjugate of $v$ since there is none. That is, there is no function $ucolonmathbb{C}setminus{1+2i}longrightarrowmathbb C$ which is an harmonic conjugate of $v$. You will find a proof here.






          share|cite|improve this answer



















          • 1




            I have deleted my first sentence. On the other hand, I thought that your problem was to find an harmonic conjugate $u$ of $v$. Am I wrong?
            – José Carlos Santos
            Nov 22 '18 at 11:51








          • 1




            No. The fact that $v$ is harmonic only assures that a harmonic conjugate exists localy. But your function is a standard example of function without a global harmonic conjugate.
            – José Carlos Santos
            Nov 22 '18 at 11:56






          • 1




            For each $(x,y)in D_v$ there is an open ball $B$ centered at that point such that $v|_B$ has a harmonic conjugate; that's the meaning of the fact that locally $v$ has a harmonic conjugate. However, there is no harmonic conjugate of $v$ whose domain is $D_v$; that's what it means that there is no harmonic conjugate globally.
            – José Carlos Santos
            Nov 22 '18 at 12:02








          • 1




            Actually, $1+2i$ is a bad choice, since $1+2i$ is the only point outside the domain of $v$. There is no global harmonic conjugate of $v$, but there is one near every point of its domain.
            – José Carlos Santos
            Nov 22 '18 at 12:26






          • 1




            I have no more ways of telling you that $v$ has no harmonic conjugate. I'm off.
            – José Carlos Santos
            Nov 22 '18 at 12:37














          1












          1








          1






          You will not be able to find an harmonic conjugate of $v$ since there is none. That is, there is no function $ucolonmathbb{C}setminus{1+2i}longrightarrowmathbb C$ which is an harmonic conjugate of $v$. You will find a proof here.






          share|cite|improve this answer














          You will not be able to find an harmonic conjugate of $v$ since there is none. That is, there is no function $ucolonmathbb{C}setminus{1+2i}longrightarrowmathbb C$ which is an harmonic conjugate of $v$. You will find a proof here.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Nov 22 '18 at 11:49

























          answered Nov 22 '18 at 11:41









          José Carlos Santos

          152k22123224




          152k22123224








          • 1




            I have deleted my first sentence. On the other hand, I thought that your problem was to find an harmonic conjugate $u$ of $v$. Am I wrong?
            – José Carlos Santos
            Nov 22 '18 at 11:51








          • 1




            No. The fact that $v$ is harmonic only assures that a harmonic conjugate exists localy. But your function is a standard example of function without a global harmonic conjugate.
            – José Carlos Santos
            Nov 22 '18 at 11:56






          • 1




            For each $(x,y)in D_v$ there is an open ball $B$ centered at that point such that $v|_B$ has a harmonic conjugate; that's the meaning of the fact that locally $v$ has a harmonic conjugate. However, there is no harmonic conjugate of $v$ whose domain is $D_v$; that's what it means that there is no harmonic conjugate globally.
            – José Carlos Santos
            Nov 22 '18 at 12:02








          • 1




            Actually, $1+2i$ is a bad choice, since $1+2i$ is the only point outside the domain of $v$. There is no global harmonic conjugate of $v$, but there is one near every point of its domain.
            – José Carlos Santos
            Nov 22 '18 at 12:26






          • 1




            I have no more ways of telling you that $v$ has no harmonic conjugate. I'm off.
            – José Carlos Santos
            Nov 22 '18 at 12:37














          • 1




            I have deleted my first sentence. On the other hand, I thought that your problem was to find an harmonic conjugate $u$ of $v$. Am I wrong?
            – José Carlos Santos
            Nov 22 '18 at 11:51








          • 1




            No. The fact that $v$ is harmonic only assures that a harmonic conjugate exists localy. But your function is a standard example of function without a global harmonic conjugate.
            – José Carlos Santos
            Nov 22 '18 at 11:56






          • 1




            For each $(x,y)in D_v$ there is an open ball $B$ centered at that point such that $v|_B$ has a harmonic conjugate; that's the meaning of the fact that locally $v$ has a harmonic conjugate. However, there is no harmonic conjugate of $v$ whose domain is $D_v$; that's what it means that there is no harmonic conjugate globally.
            – José Carlos Santos
            Nov 22 '18 at 12:02








          • 1




            Actually, $1+2i$ is a bad choice, since $1+2i$ is the only point outside the domain of $v$. There is no global harmonic conjugate of $v$, but there is one near every point of its domain.
            – José Carlos Santos
            Nov 22 '18 at 12:26






          • 1




            I have no more ways of telling you that $v$ has no harmonic conjugate. I'm off.
            – José Carlos Santos
            Nov 22 '18 at 12:37








          1




          1




          I have deleted my first sentence. On the other hand, I thought that your problem was to find an harmonic conjugate $u$ of $v$. Am I wrong?
          – José Carlos Santos
          Nov 22 '18 at 11:51






          I have deleted my first sentence. On the other hand, I thought that your problem was to find an harmonic conjugate $u$ of $v$. Am I wrong?
          – José Carlos Santos
          Nov 22 '18 at 11:51






          1




          1




          No. The fact that $v$ is harmonic only assures that a harmonic conjugate exists localy. But your function is a standard example of function without a global harmonic conjugate.
          – José Carlos Santos
          Nov 22 '18 at 11:56




          No. The fact that $v$ is harmonic only assures that a harmonic conjugate exists localy. But your function is a standard example of function without a global harmonic conjugate.
          – José Carlos Santos
          Nov 22 '18 at 11:56




          1




          1




          For each $(x,y)in D_v$ there is an open ball $B$ centered at that point such that $v|_B$ has a harmonic conjugate; that's the meaning of the fact that locally $v$ has a harmonic conjugate. However, there is no harmonic conjugate of $v$ whose domain is $D_v$; that's what it means that there is no harmonic conjugate globally.
          – José Carlos Santos
          Nov 22 '18 at 12:02






          For each $(x,y)in D_v$ there is an open ball $B$ centered at that point such that $v|_B$ has a harmonic conjugate; that's the meaning of the fact that locally $v$ has a harmonic conjugate. However, there is no harmonic conjugate of $v$ whose domain is $D_v$; that's what it means that there is no harmonic conjugate globally.
          – José Carlos Santos
          Nov 22 '18 at 12:02






          1




          1




          Actually, $1+2i$ is a bad choice, since $1+2i$ is the only point outside the domain of $v$. There is no global harmonic conjugate of $v$, but there is one near every point of its domain.
          – José Carlos Santos
          Nov 22 '18 at 12:26




          Actually, $1+2i$ is a bad choice, since $1+2i$ is the only point outside the domain of $v$. There is no global harmonic conjugate of $v$, but there is one near every point of its domain.
          – José Carlos Santos
          Nov 22 '18 at 12:26




          1




          1




          I have no more ways of telling you that $v$ has no harmonic conjugate. I'm off.
          – José Carlos Santos
          Nov 22 '18 at 12:37




          I have no more ways of telling you that $v$ has no harmonic conjugate. I'm off.
          – José Carlos Santos
          Nov 22 '18 at 12:37


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009022%2fhow-to-find-the-harmonic-conjugate-of-vx-y-logx-12-y-22%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How to change which sound is reproduced for terminal bell?

          Can I use Tabulator js library in my java Spring + Thymeleaf project?

          Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents