How to build a matrix out of one equation so that it can be solved with Gaussian elimination?












0












$begingroup$


Find such
$ a, b, c, d ∈ ℝ $ that



$a(x^3 − x^2 + x − 1) + b(x^3 + x^2 + 3x−2) + c(x^2 + 3x + 1) +d(x^3 + 2x^2 − 2) + 7 = 0$



$∀x ∈ ℝ$ using Gauss' elimination.



How to get from the one equation to such matrix that Gaussian elimination can be used?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Find such
    $ a, b, c, d ∈ ℝ $ that



    $a(x^3 − x^2 + x − 1) + b(x^3 + x^2 + 3x−2) + c(x^2 + 3x + 1) +d(x^3 + 2x^2 − 2) + 7 = 0$



    $∀x ∈ ℝ$ using Gauss' elimination.



    How to get from the one equation to such matrix that Gaussian elimination can be used?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Find such
      $ a, b, c, d ∈ ℝ $ that



      $a(x^3 − x^2 + x − 1) + b(x^3 + x^2 + 3x−2) + c(x^2 + 3x + 1) +d(x^3 + 2x^2 − 2) + 7 = 0$



      $∀x ∈ ℝ$ using Gauss' elimination.



      How to get from the one equation to such matrix that Gaussian elimination can be used?










      share|cite|improve this question









      $endgroup$




      Find such
      $ a, b, c, d ∈ ℝ $ that



      $a(x^3 − x^2 + x − 1) + b(x^3 + x^2 + 3x−2) + c(x^2 + 3x + 1) +d(x^3 + 2x^2 − 2) + 7 = 0$



      $∀x ∈ ℝ$ using Gauss' elimination.



      How to get from the one equation to such matrix that Gaussian elimination can be used?







      linear-algebra matrices gaussian-elimination






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Oct 31 '18 at 23:50









      jasno1jasno1

      1




      1






















          2 Answers
          2






          active

          oldest

          votes


















          0












          $begingroup$

          Hint:



          Calculating the coefficients in each degree, you have to solve the system of linear equations:
          [begin{cases}begin{aligned}
          a +b+d&=0\
          -a+b+2d&=0\
          a+3b+2c&=0 \
          a+2b -c+2d&=7
          end{aligned} end{cases}

          Can you take it from there?






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            We have the following constraint




            • The coefficient of $x^3$ must be zero. ($a+b+d=0$)

            • The coefficient of $x^2$ must be zero. ($-a+b+c+2d=0$)

            • The coefficient of $x$ must be zero. ($a+3b+3c=0$)

            • The constant value must be zero. ($-a-2b+c-2d+7=0$)


            In matrix form:$$begin{bmatrix}1&1&0&1\-1&1&1&2\1&3&3&0\-1&-2&1&-2end{bmatrix}begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}0\0\0\-7end{bmatrix}$$Therefore we need to perform operations on the following matrix$$begin{bmatrix}1&1&0&1&0\-1&1&1&2&0\1&3&3&0&0\-1&-2&1&-2&-7end{bmatrix}$$as below$$begin{bmatrix}1&1&0&1&0\0&2&1&3&0\0&2&3&-1&0\0&-1&1&-1&-7end{bmatrix}$$



            $$begin{bmatrix}2&0&-1&-1&0\0&2&1&3&0\0&0&2&-4&0\0&0&3&1&-14end{bmatrix}$$



            $$begin{bmatrix}4&0&0&-6&0\0&4&0&10&0\0&0&2&-4&0\0&0&0&14&-28end{bmatrix}$$or simply



            $$begin{bmatrix}2&0&0&-3&0\0&2&0&5&0\0&0&1&-2&0\0&0&0&1&-2end{bmatrix}$$



            Let's continue what we were doing



            $$begin{bmatrix}2&0&0&0&-6\0&2&0&0&10\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$which finally yields to



            $$begin{bmatrix}1&0&0&0&-3\0&1&0&0&5\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$and at last$$begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}-3\5\-4\-2end{bmatrix}$$






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2979797%2fhow-to-build-a-matrix-out-of-one-equation-so-that-it-can-be-solved-with-gaussian%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              0












              $begingroup$

              Hint:



              Calculating the coefficients in each degree, you have to solve the system of linear equations:
              [begin{cases}begin{aligned}
              a +b+d&=0\
              -a+b+2d&=0\
              a+3b+2c&=0 \
              a+2b -c+2d&=7
              end{aligned} end{cases}

              Can you take it from there?






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                Hint:



                Calculating the coefficients in each degree, you have to solve the system of linear equations:
                [begin{cases}begin{aligned}
                a +b+d&=0\
                -a+b+2d&=0\
                a+3b+2c&=0 \
                a+2b -c+2d&=7
                end{aligned} end{cases}

                Can you take it from there?






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Hint:



                  Calculating the coefficients in each degree, you have to solve the system of linear equations:
                  [begin{cases}begin{aligned}
                  a +b+d&=0\
                  -a+b+2d&=0\
                  a+3b+2c&=0 \
                  a+2b -c+2d&=7
                  end{aligned} end{cases}

                  Can you take it from there?






                  share|cite|improve this answer









                  $endgroup$



                  Hint:



                  Calculating the coefficients in each degree, you have to solve the system of linear equations:
                  [begin{cases}begin{aligned}
                  a +b+d&=0\
                  -a+b+2d&=0\
                  a+3b+2c&=0 \
                  a+2b -c+2d&=7
                  end{aligned} end{cases}

                  Can you take it from there?







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Nov 1 '18 at 0:06









                  BernardBernard

                  119k639112




                  119k639112























                      0












                      $begingroup$

                      We have the following constraint




                      • The coefficient of $x^3$ must be zero. ($a+b+d=0$)

                      • The coefficient of $x^2$ must be zero. ($-a+b+c+2d=0$)

                      • The coefficient of $x$ must be zero. ($a+3b+3c=0$)

                      • The constant value must be zero. ($-a-2b+c-2d+7=0$)


                      In matrix form:$$begin{bmatrix}1&1&0&1\-1&1&1&2\1&3&3&0\-1&-2&1&-2end{bmatrix}begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}0\0\0\-7end{bmatrix}$$Therefore we need to perform operations on the following matrix$$begin{bmatrix}1&1&0&1&0\-1&1&1&2&0\1&3&3&0&0\-1&-2&1&-2&-7end{bmatrix}$$as below$$begin{bmatrix}1&1&0&1&0\0&2&1&3&0\0&2&3&-1&0\0&-1&1&-1&-7end{bmatrix}$$



                      $$begin{bmatrix}2&0&-1&-1&0\0&2&1&3&0\0&0&2&-4&0\0&0&3&1&-14end{bmatrix}$$



                      $$begin{bmatrix}4&0&0&-6&0\0&4&0&10&0\0&0&2&-4&0\0&0&0&14&-28end{bmatrix}$$or simply



                      $$begin{bmatrix}2&0&0&-3&0\0&2&0&5&0\0&0&1&-2&0\0&0&0&1&-2end{bmatrix}$$



                      Let's continue what we were doing



                      $$begin{bmatrix}2&0&0&0&-6\0&2&0&0&10\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$which finally yields to



                      $$begin{bmatrix}1&0&0&0&-3\0&1&0&0&5\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$and at last$$begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}-3\5\-4\-2end{bmatrix}$$






                      share|cite|improve this answer









                      $endgroup$


















                        0












                        $begingroup$

                        We have the following constraint




                        • The coefficient of $x^3$ must be zero. ($a+b+d=0$)

                        • The coefficient of $x^2$ must be zero. ($-a+b+c+2d=0$)

                        • The coefficient of $x$ must be zero. ($a+3b+3c=0$)

                        • The constant value must be zero. ($-a-2b+c-2d+7=0$)


                        In matrix form:$$begin{bmatrix}1&1&0&1\-1&1&1&2\1&3&3&0\-1&-2&1&-2end{bmatrix}begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}0\0\0\-7end{bmatrix}$$Therefore we need to perform operations on the following matrix$$begin{bmatrix}1&1&0&1&0\-1&1&1&2&0\1&3&3&0&0\-1&-2&1&-2&-7end{bmatrix}$$as below$$begin{bmatrix}1&1&0&1&0\0&2&1&3&0\0&2&3&-1&0\0&-1&1&-1&-7end{bmatrix}$$



                        $$begin{bmatrix}2&0&-1&-1&0\0&2&1&3&0\0&0&2&-4&0\0&0&3&1&-14end{bmatrix}$$



                        $$begin{bmatrix}4&0&0&-6&0\0&4&0&10&0\0&0&2&-4&0\0&0&0&14&-28end{bmatrix}$$or simply



                        $$begin{bmatrix}2&0&0&-3&0\0&2&0&5&0\0&0&1&-2&0\0&0&0&1&-2end{bmatrix}$$



                        Let's continue what we were doing



                        $$begin{bmatrix}2&0&0&0&-6\0&2&0&0&10\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$which finally yields to



                        $$begin{bmatrix}1&0&0&0&-3\0&1&0&0&5\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$and at last$$begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}-3\5\-4\-2end{bmatrix}$$






                        share|cite|improve this answer









                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          We have the following constraint




                          • The coefficient of $x^3$ must be zero. ($a+b+d=0$)

                          • The coefficient of $x^2$ must be zero. ($-a+b+c+2d=0$)

                          • The coefficient of $x$ must be zero. ($a+3b+3c=0$)

                          • The constant value must be zero. ($-a-2b+c-2d+7=0$)


                          In matrix form:$$begin{bmatrix}1&1&0&1\-1&1&1&2\1&3&3&0\-1&-2&1&-2end{bmatrix}begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}0\0\0\-7end{bmatrix}$$Therefore we need to perform operations on the following matrix$$begin{bmatrix}1&1&0&1&0\-1&1&1&2&0\1&3&3&0&0\-1&-2&1&-2&-7end{bmatrix}$$as below$$begin{bmatrix}1&1&0&1&0\0&2&1&3&0\0&2&3&-1&0\0&-1&1&-1&-7end{bmatrix}$$



                          $$begin{bmatrix}2&0&-1&-1&0\0&2&1&3&0\0&0&2&-4&0\0&0&3&1&-14end{bmatrix}$$



                          $$begin{bmatrix}4&0&0&-6&0\0&4&0&10&0\0&0&2&-4&0\0&0&0&14&-28end{bmatrix}$$or simply



                          $$begin{bmatrix}2&0&0&-3&0\0&2&0&5&0\0&0&1&-2&0\0&0&0&1&-2end{bmatrix}$$



                          Let's continue what we were doing



                          $$begin{bmatrix}2&0&0&0&-6\0&2&0&0&10\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$which finally yields to



                          $$begin{bmatrix}1&0&0&0&-3\0&1&0&0&5\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$and at last$$begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}-3\5\-4\-2end{bmatrix}$$






                          share|cite|improve this answer









                          $endgroup$



                          We have the following constraint




                          • The coefficient of $x^3$ must be zero. ($a+b+d=0$)

                          • The coefficient of $x^2$ must be zero. ($-a+b+c+2d=0$)

                          • The coefficient of $x$ must be zero. ($a+3b+3c=0$)

                          • The constant value must be zero. ($-a-2b+c-2d+7=0$)


                          In matrix form:$$begin{bmatrix}1&1&0&1\-1&1&1&2\1&3&3&0\-1&-2&1&-2end{bmatrix}begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}0\0\0\-7end{bmatrix}$$Therefore we need to perform operations on the following matrix$$begin{bmatrix}1&1&0&1&0\-1&1&1&2&0\1&3&3&0&0\-1&-2&1&-2&-7end{bmatrix}$$as below$$begin{bmatrix}1&1&0&1&0\0&2&1&3&0\0&2&3&-1&0\0&-1&1&-1&-7end{bmatrix}$$



                          $$begin{bmatrix}2&0&-1&-1&0\0&2&1&3&0\0&0&2&-4&0\0&0&3&1&-14end{bmatrix}$$



                          $$begin{bmatrix}4&0&0&-6&0\0&4&0&10&0\0&0&2&-4&0\0&0&0&14&-28end{bmatrix}$$or simply



                          $$begin{bmatrix}2&0&0&-3&0\0&2&0&5&0\0&0&1&-2&0\0&0&0&1&-2end{bmatrix}$$



                          Let's continue what we were doing



                          $$begin{bmatrix}2&0&0&0&-6\0&2&0&0&10\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$which finally yields to



                          $$begin{bmatrix}1&0&0&0&-3\0&1&0&0&5\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$and at last$$begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}-3\5\-4\-2end{bmatrix}$$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Nov 24 '18 at 17:04









                          Mostafa AyazMostafa Ayaz

                          15.3k3939




                          15.3k3939






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2979797%2fhow-to-build-a-matrix-out-of-one-equation-so-that-it-can-be-solved-with-gaussian%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

                              ComboBox Display Member on multiple fields

                              Is it possible to collect Nectar points via Trainline?