Finding the residues of $frac{cos z -1}{(e^z-1)^2}$.












-2












$begingroup$


I've found the poles of $frac{cos z -1}{(e^z-1)^2}$ to be double poles at each $z_k = 2kpi i$, where $kinmathbb{Z}$ and $kneq 0$. (At $k=0$ this is a removable singularity instead.)



I have no idea how to find out the residues at each $z_k$ - I tried using the formula $limlimits_{zrightarrow z_{0}}dfrac{d}{dz}(z-z_{k})^{2}dfrac{cos z -1}{(e^{z}-1)^{2}}$, but I can't see how to rearrange that and find the limit.



Is there a better way to do this?










share|cite|improve this question









$endgroup$

















    -2












    $begingroup$


    I've found the poles of $frac{cos z -1}{(e^z-1)^2}$ to be double poles at each $z_k = 2kpi i$, where $kinmathbb{Z}$ and $kneq 0$. (At $k=0$ this is a removable singularity instead.)



    I have no idea how to find out the residues at each $z_k$ - I tried using the formula $limlimits_{zrightarrow z_{0}}dfrac{d}{dz}(z-z_{k})^{2}dfrac{cos z -1}{(e^{z}-1)^{2}}$, but I can't see how to rearrange that and find the limit.



    Is there a better way to do this?










    share|cite|improve this question









    $endgroup$















      -2












      -2








      -2





      $begingroup$


      I've found the poles of $frac{cos z -1}{(e^z-1)^2}$ to be double poles at each $z_k = 2kpi i$, where $kinmathbb{Z}$ and $kneq 0$. (At $k=0$ this is a removable singularity instead.)



      I have no idea how to find out the residues at each $z_k$ - I tried using the formula $limlimits_{zrightarrow z_{0}}dfrac{d}{dz}(z-z_{k})^{2}dfrac{cos z -1}{(e^{z}-1)^{2}}$, but I can't see how to rearrange that and find the limit.



      Is there a better way to do this?










      share|cite|improve this question









      $endgroup$




      I've found the poles of $frac{cos z -1}{(e^z-1)^2}$ to be double poles at each $z_k = 2kpi i$, where $kinmathbb{Z}$ and $kneq 0$. (At $k=0$ this is a removable singularity instead.)



      I have no idea how to find out the residues at each $z_k$ - I tried using the formula $limlimits_{zrightarrow z_{0}}dfrac{d}{dz}(z-z_{k})^{2}dfrac{cos z -1}{(e^{z}-1)^{2}}$, but I can't see how to rearrange that and find the limit.



      Is there a better way to do this?







      complex-analysis limits analysis residue-calculus holomorphic-functions






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 24 '18 at 16:50









      pejetpejet

      11




      11






















          2 Answers
          2






          active

          oldest

          votes


















          0












          $begingroup$

          Note thatbegin{align}cos(z)-1&=cosbigl((z-2kpi i)+2kpi i)-1\&=cos(z-2kpi i)cosh(2kpi)-1-sin(z-2kpi i)sinh(2kpi)i\&=cosh(2kpi)-1-isinh(2kpi)(z-2kpi i)+cdotsend{align}and thatbegin{align}(e^z-1)^2&=(e^{z-2kpi i}-1)^2\&=(z-2pi i)^2+(z-2pi i)^3+cdotsend{align}So, if$$frac{cos(z)-1}{(e^z-1)^2}=frac{a_{-2}}{(z-2kpi i)^2}+frac{a_{-1}}{z-kpi i}+a_0+cdots,$$then you have$$cos(z)-1=cosh(2kpi)-1-isinh(2kpi)(z-2kpi i)+cdots$$and alsobegin{align}cos(z)-1&=cosh(2kpi)-1-isinh(2kpi)(z-2kpi i)+cdots\&=(e^z-1)^2frac{cos(z)-1}{(e^z-1)^2}\&=bigl((z-2pi i)^2+(z-2pi i)^3+cdotsbigr)left(frac{a_{-2}}{(z-2kpi i)^2}+frac{a_{-1}}{z-kpi i}+a_0+cdotsright)\&=bigl(1+(z-2kpi i)bigr)bigl(a_{-2}+a_{-1}(z-2kpi i)+a_0(z-2kpi i)^2+cdotsbigr)\&=a_{-2}+(a_{-2}+a_{-1})(z-2kpi i)+cdotsend{align}So, $a_{-2}=cos(2kpi)-1$, and the residue, which is $a_{-1}$ can now be obtained from the equality$$a_{-2}+a_{-1}=-isinh(2kpi).$$In other words, the residue is equal to $1-cosh(2kpi)-isinh(2kpi)$.






          share|cite|improve this answer











          $endgroup$





















            0












            $begingroup$

            You have already found that $z=0$ is a removable singularity and the poles are $z_k=2kπi$ with $kinmathbb{Z}, kneq 0$.



            $(e^z-1)^2$ is analytic on $mathbb{C}$, so it can be expanded in a Taylor series (converging to it at all $zinmathbb{C}$) about $z=z_k$:



            begin{align}(e^z-1)^2&=(z-z_k)^2+(z-z_k)^3+cdots\&=(z-z_k)^2left[1+(z-z_k)+cdotsright]\&=(z-z_k)^2 g_k(z),end{align}



            with $g_k(z_k)=g'_k(z_k)=1.$



            The residue of the function at $z=z_k$ is:



            begin{align}&limlimits_{zrightarrow z_k}frac{d}{dz}frac{cos z -1}{g_k(z)}\&=limlimits_{zrightarrow z_k}frac{(-sin z)g_k(z)+(1-cos z)g'_k(z)}{[g_k(z)]^2}
            \&=1-cos (2kpi i)-sin (2kpi i)
            \&=1-cosh (2kpi)-isinh (2kpi).end{align}






            share|cite|improve this answer











            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3011780%2ffinding-the-residues-of-frac-cos-z-1ez-12%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              0












              $begingroup$

              Note thatbegin{align}cos(z)-1&=cosbigl((z-2kpi i)+2kpi i)-1\&=cos(z-2kpi i)cosh(2kpi)-1-sin(z-2kpi i)sinh(2kpi)i\&=cosh(2kpi)-1-isinh(2kpi)(z-2kpi i)+cdotsend{align}and thatbegin{align}(e^z-1)^2&=(e^{z-2kpi i}-1)^2\&=(z-2pi i)^2+(z-2pi i)^3+cdotsend{align}So, if$$frac{cos(z)-1}{(e^z-1)^2}=frac{a_{-2}}{(z-2kpi i)^2}+frac{a_{-1}}{z-kpi i}+a_0+cdots,$$then you have$$cos(z)-1=cosh(2kpi)-1-isinh(2kpi)(z-2kpi i)+cdots$$and alsobegin{align}cos(z)-1&=cosh(2kpi)-1-isinh(2kpi)(z-2kpi i)+cdots\&=(e^z-1)^2frac{cos(z)-1}{(e^z-1)^2}\&=bigl((z-2pi i)^2+(z-2pi i)^3+cdotsbigr)left(frac{a_{-2}}{(z-2kpi i)^2}+frac{a_{-1}}{z-kpi i}+a_0+cdotsright)\&=bigl(1+(z-2kpi i)bigr)bigl(a_{-2}+a_{-1}(z-2kpi i)+a_0(z-2kpi i)^2+cdotsbigr)\&=a_{-2}+(a_{-2}+a_{-1})(z-2kpi i)+cdotsend{align}So, $a_{-2}=cos(2kpi)-1$, and the residue, which is $a_{-1}$ can now be obtained from the equality$$a_{-2}+a_{-1}=-isinh(2kpi).$$In other words, the residue is equal to $1-cosh(2kpi)-isinh(2kpi)$.






              share|cite|improve this answer











              $endgroup$


















                0












                $begingroup$

                Note thatbegin{align}cos(z)-1&=cosbigl((z-2kpi i)+2kpi i)-1\&=cos(z-2kpi i)cosh(2kpi)-1-sin(z-2kpi i)sinh(2kpi)i\&=cosh(2kpi)-1-isinh(2kpi)(z-2kpi i)+cdotsend{align}and thatbegin{align}(e^z-1)^2&=(e^{z-2kpi i}-1)^2\&=(z-2pi i)^2+(z-2pi i)^3+cdotsend{align}So, if$$frac{cos(z)-1}{(e^z-1)^2}=frac{a_{-2}}{(z-2kpi i)^2}+frac{a_{-1}}{z-kpi i}+a_0+cdots,$$then you have$$cos(z)-1=cosh(2kpi)-1-isinh(2kpi)(z-2kpi i)+cdots$$and alsobegin{align}cos(z)-1&=cosh(2kpi)-1-isinh(2kpi)(z-2kpi i)+cdots\&=(e^z-1)^2frac{cos(z)-1}{(e^z-1)^2}\&=bigl((z-2pi i)^2+(z-2pi i)^3+cdotsbigr)left(frac{a_{-2}}{(z-2kpi i)^2}+frac{a_{-1}}{z-kpi i}+a_0+cdotsright)\&=bigl(1+(z-2kpi i)bigr)bigl(a_{-2}+a_{-1}(z-2kpi i)+a_0(z-2kpi i)^2+cdotsbigr)\&=a_{-2}+(a_{-2}+a_{-1})(z-2kpi i)+cdotsend{align}So, $a_{-2}=cos(2kpi)-1$, and the residue, which is $a_{-1}$ can now be obtained from the equality$$a_{-2}+a_{-1}=-isinh(2kpi).$$In other words, the residue is equal to $1-cosh(2kpi)-isinh(2kpi)$.






                share|cite|improve this answer











                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Note thatbegin{align}cos(z)-1&=cosbigl((z-2kpi i)+2kpi i)-1\&=cos(z-2kpi i)cosh(2kpi)-1-sin(z-2kpi i)sinh(2kpi)i\&=cosh(2kpi)-1-isinh(2kpi)(z-2kpi i)+cdotsend{align}and thatbegin{align}(e^z-1)^2&=(e^{z-2kpi i}-1)^2\&=(z-2pi i)^2+(z-2pi i)^3+cdotsend{align}So, if$$frac{cos(z)-1}{(e^z-1)^2}=frac{a_{-2}}{(z-2kpi i)^2}+frac{a_{-1}}{z-kpi i}+a_0+cdots,$$then you have$$cos(z)-1=cosh(2kpi)-1-isinh(2kpi)(z-2kpi i)+cdots$$and alsobegin{align}cos(z)-1&=cosh(2kpi)-1-isinh(2kpi)(z-2kpi i)+cdots\&=(e^z-1)^2frac{cos(z)-1}{(e^z-1)^2}\&=bigl((z-2pi i)^2+(z-2pi i)^3+cdotsbigr)left(frac{a_{-2}}{(z-2kpi i)^2}+frac{a_{-1}}{z-kpi i}+a_0+cdotsright)\&=bigl(1+(z-2kpi i)bigr)bigl(a_{-2}+a_{-1}(z-2kpi i)+a_0(z-2kpi i)^2+cdotsbigr)\&=a_{-2}+(a_{-2}+a_{-1})(z-2kpi i)+cdotsend{align}So, $a_{-2}=cos(2kpi)-1$, and the residue, which is $a_{-1}$ can now be obtained from the equality$$a_{-2}+a_{-1}=-isinh(2kpi).$$In other words, the residue is equal to $1-cosh(2kpi)-isinh(2kpi)$.






                  share|cite|improve this answer











                  $endgroup$



                  Note thatbegin{align}cos(z)-1&=cosbigl((z-2kpi i)+2kpi i)-1\&=cos(z-2kpi i)cosh(2kpi)-1-sin(z-2kpi i)sinh(2kpi)i\&=cosh(2kpi)-1-isinh(2kpi)(z-2kpi i)+cdotsend{align}and thatbegin{align}(e^z-1)^2&=(e^{z-2kpi i}-1)^2\&=(z-2pi i)^2+(z-2pi i)^3+cdotsend{align}So, if$$frac{cos(z)-1}{(e^z-1)^2}=frac{a_{-2}}{(z-2kpi i)^2}+frac{a_{-1}}{z-kpi i}+a_0+cdots,$$then you have$$cos(z)-1=cosh(2kpi)-1-isinh(2kpi)(z-2kpi i)+cdots$$and alsobegin{align}cos(z)-1&=cosh(2kpi)-1-isinh(2kpi)(z-2kpi i)+cdots\&=(e^z-1)^2frac{cos(z)-1}{(e^z-1)^2}\&=bigl((z-2pi i)^2+(z-2pi i)^3+cdotsbigr)left(frac{a_{-2}}{(z-2kpi i)^2}+frac{a_{-1}}{z-kpi i}+a_0+cdotsright)\&=bigl(1+(z-2kpi i)bigr)bigl(a_{-2}+a_{-1}(z-2kpi i)+a_0(z-2kpi i)^2+cdotsbigr)\&=a_{-2}+(a_{-2}+a_{-1})(z-2kpi i)+cdotsend{align}So, $a_{-2}=cos(2kpi)-1$, and the residue, which is $a_{-1}$ can now be obtained from the equality$$a_{-2}+a_{-1}=-isinh(2kpi).$$In other words, the residue is equal to $1-cosh(2kpi)-isinh(2kpi)$.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Nov 26 '18 at 8:54

























                  answered Nov 24 '18 at 17:27









                  José Carlos SantosJosé Carlos Santos

                  154k22123226




                  154k22123226























                      0












                      $begingroup$

                      You have already found that $z=0$ is a removable singularity and the poles are $z_k=2kπi$ with $kinmathbb{Z}, kneq 0$.



                      $(e^z-1)^2$ is analytic on $mathbb{C}$, so it can be expanded in a Taylor series (converging to it at all $zinmathbb{C}$) about $z=z_k$:



                      begin{align}(e^z-1)^2&=(z-z_k)^2+(z-z_k)^3+cdots\&=(z-z_k)^2left[1+(z-z_k)+cdotsright]\&=(z-z_k)^2 g_k(z),end{align}



                      with $g_k(z_k)=g'_k(z_k)=1.$



                      The residue of the function at $z=z_k$ is:



                      begin{align}&limlimits_{zrightarrow z_k}frac{d}{dz}frac{cos z -1}{g_k(z)}\&=limlimits_{zrightarrow z_k}frac{(-sin z)g_k(z)+(1-cos z)g'_k(z)}{[g_k(z)]^2}
                      \&=1-cos (2kpi i)-sin (2kpi i)
                      \&=1-cosh (2kpi)-isinh (2kpi).end{align}






                      share|cite|improve this answer











                      $endgroup$


















                        0












                        $begingroup$

                        You have already found that $z=0$ is a removable singularity and the poles are $z_k=2kπi$ with $kinmathbb{Z}, kneq 0$.



                        $(e^z-1)^2$ is analytic on $mathbb{C}$, so it can be expanded in a Taylor series (converging to it at all $zinmathbb{C}$) about $z=z_k$:



                        begin{align}(e^z-1)^2&=(z-z_k)^2+(z-z_k)^3+cdots\&=(z-z_k)^2left[1+(z-z_k)+cdotsright]\&=(z-z_k)^2 g_k(z),end{align}



                        with $g_k(z_k)=g'_k(z_k)=1.$



                        The residue of the function at $z=z_k$ is:



                        begin{align}&limlimits_{zrightarrow z_k}frac{d}{dz}frac{cos z -1}{g_k(z)}\&=limlimits_{zrightarrow z_k}frac{(-sin z)g_k(z)+(1-cos z)g'_k(z)}{[g_k(z)]^2}
                        \&=1-cos (2kpi i)-sin (2kpi i)
                        \&=1-cosh (2kpi)-isinh (2kpi).end{align}






                        share|cite|improve this answer











                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          You have already found that $z=0$ is a removable singularity and the poles are $z_k=2kπi$ with $kinmathbb{Z}, kneq 0$.



                          $(e^z-1)^2$ is analytic on $mathbb{C}$, so it can be expanded in a Taylor series (converging to it at all $zinmathbb{C}$) about $z=z_k$:



                          begin{align}(e^z-1)^2&=(z-z_k)^2+(z-z_k)^3+cdots\&=(z-z_k)^2left[1+(z-z_k)+cdotsright]\&=(z-z_k)^2 g_k(z),end{align}



                          with $g_k(z_k)=g'_k(z_k)=1.$



                          The residue of the function at $z=z_k$ is:



                          begin{align}&limlimits_{zrightarrow z_k}frac{d}{dz}frac{cos z -1}{g_k(z)}\&=limlimits_{zrightarrow z_k}frac{(-sin z)g_k(z)+(1-cos z)g'_k(z)}{[g_k(z)]^2}
                          \&=1-cos (2kpi i)-sin (2kpi i)
                          \&=1-cosh (2kpi)-isinh (2kpi).end{align}






                          share|cite|improve this answer











                          $endgroup$



                          You have already found that $z=0$ is a removable singularity and the poles are $z_k=2kπi$ with $kinmathbb{Z}, kneq 0$.



                          $(e^z-1)^2$ is analytic on $mathbb{C}$, so it can be expanded in a Taylor series (converging to it at all $zinmathbb{C}$) about $z=z_k$:



                          begin{align}(e^z-1)^2&=(z-z_k)^2+(z-z_k)^3+cdots\&=(z-z_k)^2left[1+(z-z_k)+cdotsright]\&=(z-z_k)^2 g_k(z),end{align}



                          with $g_k(z_k)=g'_k(z_k)=1.$



                          The residue of the function at $z=z_k$ is:



                          begin{align}&limlimits_{zrightarrow z_k}frac{d}{dz}frac{cos z -1}{g_k(z)}\&=limlimits_{zrightarrow z_k}frac{(-sin z)g_k(z)+(1-cos z)g'_k(z)}{[g_k(z)]^2}
                          \&=1-cos (2kpi i)-sin (2kpi i)
                          \&=1-cosh (2kpi)-isinh (2kpi).end{align}







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Dec 2 '18 at 16:20

























                          answered Dec 2 '18 at 16:11







                          user621367





































                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3011780%2ffinding-the-residues-of-frac-cos-z-1ez-12%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              How to change which sound is reproduced for terminal bell?

                              Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

                              Can I use Tabulator js library in my java Spring + Thymeleaf project?