A Basic Question about Integrals












3












$begingroup$


I have a basic question about integrals. Suppose that $f: [0,1] mapsto mathbb{R}$ is a bounded function. Do not assume that $f$ is continuous. For each $n geq 1$, define $f_n: [0,1]mapsto mathbb{R}$ by:
$$f_n(x) = sum_{j=1}^n nint_{frac{j-1}{n}}^{frac{j}{n}} f(y) dy ~mathbf{1}left(frac{j-1}{n}< x leq frac{j}{n}right)~.$$
$f_n$ may be thought of as an $n-$step piecewise approximation of $f$. My question is:



Is it true that $int_0^1|f_n(x)-f(x)| dx rightarrow 0$ as $nrightarrow infty$? Also, does this answer depend on whether the integrals in question are Riemann or they are Lebesgue (in the sense of integration w.r.t. the Lebesgue measure)?



Any help will be appreciated! Thanks.










share|cite|improve this question









$endgroup$












  • $begingroup$
    The equation for $f_n(x)$ is very confusing. j is a dummy index, so the term with $x$ on the right is hard to understand.
    $endgroup$
    – herb steinberg
    Nov 24 '18 at 18:53










  • $begingroup$
    @herb steinberg, when $x in ((j-1)/n,j/n]$ $(1leq jleq n)$, $f_n(x) = n int_{(j-1)/n}^{j/n} f$. Hence, $f_n$ is a step function.
    $endgroup$
    – abcd
    Nov 24 '18 at 19:27












  • $begingroup$
    And in my original post, everything (including the term in the left with the $x$ is inside the summation.
    $endgroup$
    – abcd
    Nov 24 '18 at 19:28










  • $begingroup$
    If it is Riemann integrable, using Darboux approach will give you what you need, since the upper and lower Darboux sums will bracket $f_n(x)$.
    $endgroup$
    – herb steinberg
    Nov 24 '18 at 22:25
















3












$begingroup$


I have a basic question about integrals. Suppose that $f: [0,1] mapsto mathbb{R}$ is a bounded function. Do not assume that $f$ is continuous. For each $n geq 1$, define $f_n: [0,1]mapsto mathbb{R}$ by:
$$f_n(x) = sum_{j=1}^n nint_{frac{j-1}{n}}^{frac{j}{n}} f(y) dy ~mathbf{1}left(frac{j-1}{n}< x leq frac{j}{n}right)~.$$
$f_n$ may be thought of as an $n-$step piecewise approximation of $f$. My question is:



Is it true that $int_0^1|f_n(x)-f(x)| dx rightarrow 0$ as $nrightarrow infty$? Also, does this answer depend on whether the integrals in question are Riemann or they are Lebesgue (in the sense of integration w.r.t. the Lebesgue measure)?



Any help will be appreciated! Thanks.










share|cite|improve this question









$endgroup$












  • $begingroup$
    The equation for $f_n(x)$ is very confusing. j is a dummy index, so the term with $x$ on the right is hard to understand.
    $endgroup$
    – herb steinberg
    Nov 24 '18 at 18:53










  • $begingroup$
    @herb steinberg, when $x in ((j-1)/n,j/n]$ $(1leq jleq n)$, $f_n(x) = n int_{(j-1)/n}^{j/n} f$. Hence, $f_n$ is a step function.
    $endgroup$
    – abcd
    Nov 24 '18 at 19:27












  • $begingroup$
    And in my original post, everything (including the term in the left with the $x$ is inside the summation.
    $endgroup$
    – abcd
    Nov 24 '18 at 19:28










  • $begingroup$
    If it is Riemann integrable, using Darboux approach will give you what you need, since the upper and lower Darboux sums will bracket $f_n(x)$.
    $endgroup$
    – herb steinberg
    Nov 24 '18 at 22:25














3












3








3


1



$begingroup$


I have a basic question about integrals. Suppose that $f: [0,1] mapsto mathbb{R}$ is a bounded function. Do not assume that $f$ is continuous. For each $n geq 1$, define $f_n: [0,1]mapsto mathbb{R}$ by:
$$f_n(x) = sum_{j=1}^n nint_{frac{j-1}{n}}^{frac{j}{n}} f(y) dy ~mathbf{1}left(frac{j-1}{n}< x leq frac{j}{n}right)~.$$
$f_n$ may be thought of as an $n-$step piecewise approximation of $f$. My question is:



Is it true that $int_0^1|f_n(x)-f(x)| dx rightarrow 0$ as $nrightarrow infty$? Also, does this answer depend on whether the integrals in question are Riemann or they are Lebesgue (in the sense of integration w.r.t. the Lebesgue measure)?



Any help will be appreciated! Thanks.










share|cite|improve this question









$endgroup$




I have a basic question about integrals. Suppose that $f: [0,1] mapsto mathbb{R}$ is a bounded function. Do not assume that $f$ is continuous. For each $n geq 1$, define $f_n: [0,1]mapsto mathbb{R}$ by:
$$f_n(x) = sum_{j=1}^n nint_{frac{j-1}{n}}^{frac{j}{n}} f(y) dy ~mathbf{1}left(frac{j-1}{n}< x leq frac{j}{n}right)~.$$
$f_n$ may be thought of as an $n-$step piecewise approximation of $f$. My question is:



Is it true that $int_0^1|f_n(x)-f(x)| dx rightarrow 0$ as $nrightarrow infty$? Also, does this answer depend on whether the integrals in question are Riemann or they are Lebesgue (in the sense of integration w.r.t. the Lebesgue measure)?



Any help will be appreciated! Thanks.







lebesgue-integral riemann-integration






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 24 '18 at 17:37









abcdabcd

817




817












  • $begingroup$
    The equation for $f_n(x)$ is very confusing. j is a dummy index, so the term with $x$ on the right is hard to understand.
    $endgroup$
    – herb steinberg
    Nov 24 '18 at 18:53










  • $begingroup$
    @herb steinberg, when $x in ((j-1)/n,j/n]$ $(1leq jleq n)$, $f_n(x) = n int_{(j-1)/n}^{j/n} f$. Hence, $f_n$ is a step function.
    $endgroup$
    – abcd
    Nov 24 '18 at 19:27












  • $begingroup$
    And in my original post, everything (including the term in the left with the $x$ is inside the summation.
    $endgroup$
    – abcd
    Nov 24 '18 at 19:28










  • $begingroup$
    If it is Riemann integrable, using Darboux approach will give you what you need, since the upper and lower Darboux sums will bracket $f_n(x)$.
    $endgroup$
    – herb steinberg
    Nov 24 '18 at 22:25


















  • $begingroup$
    The equation for $f_n(x)$ is very confusing. j is a dummy index, so the term with $x$ on the right is hard to understand.
    $endgroup$
    – herb steinberg
    Nov 24 '18 at 18:53










  • $begingroup$
    @herb steinberg, when $x in ((j-1)/n,j/n]$ $(1leq jleq n)$, $f_n(x) = n int_{(j-1)/n}^{j/n} f$. Hence, $f_n$ is a step function.
    $endgroup$
    – abcd
    Nov 24 '18 at 19:27












  • $begingroup$
    And in my original post, everything (including the term in the left with the $x$ is inside the summation.
    $endgroup$
    – abcd
    Nov 24 '18 at 19:28










  • $begingroup$
    If it is Riemann integrable, using Darboux approach will give you what you need, since the upper and lower Darboux sums will bracket $f_n(x)$.
    $endgroup$
    – herb steinberg
    Nov 24 '18 at 22:25
















$begingroup$
The equation for $f_n(x)$ is very confusing. j is a dummy index, so the term with $x$ on the right is hard to understand.
$endgroup$
– herb steinberg
Nov 24 '18 at 18:53




$begingroup$
The equation for $f_n(x)$ is very confusing. j is a dummy index, so the term with $x$ on the right is hard to understand.
$endgroup$
– herb steinberg
Nov 24 '18 at 18:53












$begingroup$
@herb steinberg, when $x in ((j-1)/n,j/n]$ $(1leq jleq n)$, $f_n(x) = n int_{(j-1)/n}^{j/n} f$. Hence, $f_n$ is a step function.
$endgroup$
– abcd
Nov 24 '18 at 19:27






$begingroup$
@herb steinberg, when $x in ((j-1)/n,j/n]$ $(1leq jleq n)$, $f_n(x) = n int_{(j-1)/n}^{j/n} f$. Hence, $f_n$ is a step function.
$endgroup$
– abcd
Nov 24 '18 at 19:27














$begingroup$
And in my original post, everything (including the term in the left with the $x$ is inside the summation.
$endgroup$
– abcd
Nov 24 '18 at 19:28




$begingroup$
And in my original post, everything (including the term in the left with the $x$ is inside the summation.
$endgroup$
– abcd
Nov 24 '18 at 19:28












$begingroup$
If it is Riemann integrable, using Darboux approach will give you what you need, since the upper and lower Darboux sums will bracket $f_n(x)$.
$endgroup$
– herb steinberg
Nov 24 '18 at 22:25




$begingroup$
If it is Riemann integrable, using Darboux approach will give you what you need, since the upper and lower Darboux sums will bracket $f_n(x)$.
$endgroup$
– herb steinberg
Nov 24 '18 at 22:25










1 Answer
1






active

oldest

votes


















1












$begingroup$

This reduces for a bounded Riemann integrable function to



$$begin{align}int_0^1 |f(x) - f_n(x)| , dx &= sum_{j=1}^n int_{frac{j-1}{n}}^{frac{j}{n}}left|f(x) - nint_{frac{j-1}{n}}^{frac{j}{n}}f(y) , dy right| , dx \ &= nsum_{j=1}^n int_{frac{j-1}{n}}^{frac{j}{n}}left|frac{f(x)}{n} - int_{frac{j-1}{n}}^{frac{j}{n}}f(y) , dy right|, dx \ &= nsum_{j=1}^n int_{frac{j-1}{n}}^{frac{j}{n}}left|int_{frac{j-1}{n}}^{frac{j}{n}}[f(x) - f(y)] , dy right|,dx \ &leqslant nsum_{j=1}^n int_{frac{j-1}{n}}^{frac{j}{n}}int_{frac{j-1}{n}}^{frac{j}{n}}|f(x) - f(y)| , dy , dx \ &leqslant nsum_{j=1}^n frac{sup_{x,y in left[frac{j-1}{n},frac{j}{n}right]} |f(x) - f(y)|}{n^2} \ &= frac{1}{n}sum_{j=1}^n sup_{x in left[frac{j-1}{n},frac{j}{n}right]} f(x) - frac{1}{n}sum_{j=1}^n inf_{x in left[frac{j-1}{n},frac{j}{n}right]} f(x) end{align}$$



The RHS is a difference of upper and lower sums which converges to $0$ as $n to infty$.



The steps leading to the final difference of sums are valid if $f$ is bounded and Lebesgue integrable. I'll leave it to you to determine if the limit is always $0$ in case $f$ is Lebesgue but not Riemann integrable. Can you think of a counterexample?






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3011843%2fa-basic-question-about-integrals%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    This reduces for a bounded Riemann integrable function to



    $$begin{align}int_0^1 |f(x) - f_n(x)| , dx &= sum_{j=1}^n int_{frac{j-1}{n}}^{frac{j}{n}}left|f(x) - nint_{frac{j-1}{n}}^{frac{j}{n}}f(y) , dy right| , dx \ &= nsum_{j=1}^n int_{frac{j-1}{n}}^{frac{j}{n}}left|frac{f(x)}{n} - int_{frac{j-1}{n}}^{frac{j}{n}}f(y) , dy right|, dx \ &= nsum_{j=1}^n int_{frac{j-1}{n}}^{frac{j}{n}}left|int_{frac{j-1}{n}}^{frac{j}{n}}[f(x) - f(y)] , dy right|,dx \ &leqslant nsum_{j=1}^n int_{frac{j-1}{n}}^{frac{j}{n}}int_{frac{j-1}{n}}^{frac{j}{n}}|f(x) - f(y)| , dy , dx \ &leqslant nsum_{j=1}^n frac{sup_{x,y in left[frac{j-1}{n},frac{j}{n}right]} |f(x) - f(y)|}{n^2} \ &= frac{1}{n}sum_{j=1}^n sup_{x in left[frac{j-1}{n},frac{j}{n}right]} f(x) - frac{1}{n}sum_{j=1}^n inf_{x in left[frac{j-1}{n},frac{j}{n}right]} f(x) end{align}$$



    The RHS is a difference of upper and lower sums which converges to $0$ as $n to infty$.



    The steps leading to the final difference of sums are valid if $f$ is bounded and Lebesgue integrable. I'll leave it to you to determine if the limit is always $0$ in case $f$ is Lebesgue but not Riemann integrable. Can you think of a counterexample?






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      This reduces for a bounded Riemann integrable function to



      $$begin{align}int_0^1 |f(x) - f_n(x)| , dx &= sum_{j=1}^n int_{frac{j-1}{n}}^{frac{j}{n}}left|f(x) - nint_{frac{j-1}{n}}^{frac{j}{n}}f(y) , dy right| , dx \ &= nsum_{j=1}^n int_{frac{j-1}{n}}^{frac{j}{n}}left|frac{f(x)}{n} - int_{frac{j-1}{n}}^{frac{j}{n}}f(y) , dy right|, dx \ &= nsum_{j=1}^n int_{frac{j-1}{n}}^{frac{j}{n}}left|int_{frac{j-1}{n}}^{frac{j}{n}}[f(x) - f(y)] , dy right|,dx \ &leqslant nsum_{j=1}^n int_{frac{j-1}{n}}^{frac{j}{n}}int_{frac{j-1}{n}}^{frac{j}{n}}|f(x) - f(y)| , dy , dx \ &leqslant nsum_{j=1}^n frac{sup_{x,y in left[frac{j-1}{n},frac{j}{n}right]} |f(x) - f(y)|}{n^2} \ &= frac{1}{n}sum_{j=1}^n sup_{x in left[frac{j-1}{n},frac{j}{n}right]} f(x) - frac{1}{n}sum_{j=1}^n inf_{x in left[frac{j-1}{n},frac{j}{n}right]} f(x) end{align}$$



      The RHS is a difference of upper and lower sums which converges to $0$ as $n to infty$.



      The steps leading to the final difference of sums are valid if $f$ is bounded and Lebesgue integrable. I'll leave it to you to determine if the limit is always $0$ in case $f$ is Lebesgue but not Riemann integrable. Can you think of a counterexample?






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        This reduces for a bounded Riemann integrable function to



        $$begin{align}int_0^1 |f(x) - f_n(x)| , dx &= sum_{j=1}^n int_{frac{j-1}{n}}^{frac{j}{n}}left|f(x) - nint_{frac{j-1}{n}}^{frac{j}{n}}f(y) , dy right| , dx \ &= nsum_{j=1}^n int_{frac{j-1}{n}}^{frac{j}{n}}left|frac{f(x)}{n} - int_{frac{j-1}{n}}^{frac{j}{n}}f(y) , dy right|, dx \ &= nsum_{j=1}^n int_{frac{j-1}{n}}^{frac{j}{n}}left|int_{frac{j-1}{n}}^{frac{j}{n}}[f(x) - f(y)] , dy right|,dx \ &leqslant nsum_{j=1}^n int_{frac{j-1}{n}}^{frac{j}{n}}int_{frac{j-1}{n}}^{frac{j}{n}}|f(x) - f(y)| , dy , dx \ &leqslant nsum_{j=1}^n frac{sup_{x,y in left[frac{j-1}{n},frac{j}{n}right]} |f(x) - f(y)|}{n^2} \ &= frac{1}{n}sum_{j=1}^n sup_{x in left[frac{j-1}{n},frac{j}{n}right]} f(x) - frac{1}{n}sum_{j=1}^n inf_{x in left[frac{j-1}{n},frac{j}{n}right]} f(x) end{align}$$



        The RHS is a difference of upper and lower sums which converges to $0$ as $n to infty$.



        The steps leading to the final difference of sums are valid if $f$ is bounded and Lebesgue integrable. I'll leave it to you to determine if the limit is always $0$ in case $f$ is Lebesgue but not Riemann integrable. Can you think of a counterexample?






        share|cite|improve this answer











        $endgroup$



        This reduces for a bounded Riemann integrable function to



        $$begin{align}int_0^1 |f(x) - f_n(x)| , dx &= sum_{j=1}^n int_{frac{j-1}{n}}^{frac{j}{n}}left|f(x) - nint_{frac{j-1}{n}}^{frac{j}{n}}f(y) , dy right| , dx \ &= nsum_{j=1}^n int_{frac{j-1}{n}}^{frac{j}{n}}left|frac{f(x)}{n} - int_{frac{j-1}{n}}^{frac{j}{n}}f(y) , dy right|, dx \ &= nsum_{j=1}^n int_{frac{j-1}{n}}^{frac{j}{n}}left|int_{frac{j-1}{n}}^{frac{j}{n}}[f(x) - f(y)] , dy right|,dx \ &leqslant nsum_{j=1}^n int_{frac{j-1}{n}}^{frac{j}{n}}int_{frac{j-1}{n}}^{frac{j}{n}}|f(x) - f(y)| , dy , dx \ &leqslant nsum_{j=1}^n frac{sup_{x,y in left[frac{j-1}{n},frac{j}{n}right]} |f(x) - f(y)|}{n^2} \ &= frac{1}{n}sum_{j=1}^n sup_{x in left[frac{j-1}{n},frac{j}{n}right]} f(x) - frac{1}{n}sum_{j=1}^n inf_{x in left[frac{j-1}{n},frac{j}{n}right]} f(x) end{align}$$



        The RHS is a difference of upper and lower sums which converges to $0$ as $n to infty$.



        The steps leading to the final difference of sums are valid if $f$ is bounded and Lebesgue integrable. I'll leave it to you to determine if the limit is always $0$ in case $f$ is Lebesgue but not Riemann integrable. Can you think of a counterexample?







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Nov 25 '18 at 7:34

























        answered Nov 25 '18 at 7:10









        RRLRRL

        49.5k42573




        49.5k42573






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3011843%2fa-basic-question-about-integrals%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            mysqli_query(): Empty query in /home/lucindabrummitt/public_html/blog/wp-includes/wp-db.php on line 1924

            How to change which sound is reproduced for terminal bell?

            Can I use Tabulator js library in my java Spring + Thymeleaf project?