Calculating an infinite sum: $sumlimits_{n=1}^{infty} 2frac{3^{n-1}n(n-1)}{(n+2)(n+1)!}$ [closed]
$begingroup$
I need to calculate the following formula
$$sum_{n=1}^{infty} 2frac{3^{n-1}n(n-1)}{(n+2)(n+1)!}$$
I know that this sum should be finite, but I don't know how to calculate it. I've done some simplifications and reductions but it get me nowhere. Please help me to calculate it.
calculus sequences-and-series power-series
$endgroup$
closed as off-topic by Simply Beautiful Art, José Carlos Santos, Holo, Did, RRL Jan 18 at 16:47
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Simply Beautiful Art, José Carlos Santos, Holo, Did, RRL
If this question can be reworded to fit the rules in the help center, please edit the question.
add a comment |
$begingroup$
I need to calculate the following formula
$$sum_{n=1}^{infty} 2frac{3^{n-1}n(n-1)}{(n+2)(n+1)!}$$
I know that this sum should be finite, but I don't know how to calculate it. I've done some simplifications and reductions but it get me nowhere. Please help me to calculate it.
calculus sequences-and-series power-series
$endgroup$
closed as off-topic by Simply Beautiful Art, José Carlos Santos, Holo, Did, RRL Jan 18 at 16:47
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Simply Beautiful Art, José Carlos Santos, Holo, Did, RRL
If this question can be reworded to fit the rules in the help center, please edit the question.
add a comment |
$begingroup$
I need to calculate the following formula
$$sum_{n=1}^{infty} 2frac{3^{n-1}n(n-1)}{(n+2)(n+1)!}$$
I know that this sum should be finite, but I don't know how to calculate it. I've done some simplifications and reductions but it get me nowhere. Please help me to calculate it.
calculus sequences-and-series power-series
$endgroup$
I need to calculate the following formula
$$sum_{n=1}^{infty} 2frac{3^{n-1}n(n-1)}{(n+2)(n+1)!}$$
I know that this sum should be finite, but I don't know how to calculate it. I've done some simplifications and reductions but it get me nowhere. Please help me to calculate it.
calculus sequences-and-series power-series
calculus sequences-and-series power-series
edited Jan 18 at 15:20
Martin Sleziak
44.7k9117272
44.7k9117272
asked Jan 18 at 13:36
Laina YabLaina Yab
235
235
closed as off-topic by Simply Beautiful Art, José Carlos Santos, Holo, Did, RRL Jan 18 at 16:47
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Simply Beautiful Art, José Carlos Santos, Holo, Did, RRL
If this question can be reworded to fit the rules in the help center, please edit the question.
closed as off-topic by Simply Beautiful Art, José Carlos Santos, Holo, Did, RRL Jan 18 at 16:47
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Simply Beautiful Art, José Carlos Santos, Holo, Did, RRL
If this question can be reworded to fit the rules in the help center, please edit the question.
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
You may proceed as follows:
- $e^x = sum_{n=0}^{infty}frac{x^n}{n!} Rightarrow e^x -(1+x+frac{x^2}{2}) = sum_{color{blue}{n=3}}^{infty} frac{x^n}{n!} = sum_{color{blue}{n=1}}^{infty} frac{x^{n+2}}{(n+2)!}$
- $Rightarrow f(x) = frac{e^x -(1+x+frac{x^2}{2})}{x^2} = sum_{n=1}^{infty} frac{x^{n}}{(n+2)!}$
$Rightarrow 2xf''(x) = boxed{2sum_{n=1}^{infty} frac{x^{n-1}n(n-1)}{(n+2)!}}$. This is your sum for $x=3$.- $Rightarrow 2xf''(x) = 2x frac{e^x(x^2-4x+6)-2(x+3)}{x^4}= 2frac{e^x(x^2-4x+6)-2(x+3)}{x^3}$
- $x= 3 Rightarrow boxed{2sum_{n=1}^{infty} frac{3^{n-1}n(n-1)}{(n+2)!} =frac{2}{9}(e^3-4)}$
$endgroup$
1
$begingroup$
I couldn't resist saying this is very elegant
$endgroup$
– roman
Jan 18 at 14:42
add a comment |
$begingroup$
Hint:
Write $n(n-1)=(n+2)(n+1)+A(n+2)+B$
$iff n^2-n=n^2+n(3+A)+2A+B+2$
$3+A=-1iff A=-4,2A+B+2=0iff B=-2-2A=-2-2(-4)=6$
Use $sum_{r=0}^inftydfrac{y^r}{r!}=e^y$
$$dfrac{x^{n-1}n(n-1)}{(n+2)!}$$
$$=x^{n-1}cdotdfrac{ (n+2)(n+1)-4(n+2)+6}{(n+2)!} =dfrac1xcdotdfrac{x^n}{n!}-dfrac4{x^2}cdotdfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}cdotdfrac{x^{n+2}}{(n+2)!}$$
$$impliessum_{n=1}^inftydfrac{x^{n-1}n(n-1)}{(n+2)!}=dfrac1xsum_{n=1}^inftydfrac{x^n}{n!}-dfrac4{x^2}sum_{n=1}^inftydfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}sum_{n=1}^inftydfrac{x^{n+2}}{(n+2)!}$$
$$=dfrac1xleft(e^x-1right)-dfrac4{x^2}left(e^x-1-dfrac x1right)+dfrac6{x^3}left(e^x-1-dfrac x1-dfrac{x^2}{2!}right)$$
$$=e^xleft(dfrac1x-dfrac4{x^2}+dfrac6{x^3}right)+dfrac1xleft(-1+4-3right)+dfrac1{x^2}left(4+6right)-dfrac6{x^3}$$
Here $x=3$
$endgroup$
$begingroup$
See also : math.stackexchange.com/questions/2638073/…
$endgroup$
– lab bhattacharjee
Jan 19 at 4:02
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You may proceed as follows:
- $e^x = sum_{n=0}^{infty}frac{x^n}{n!} Rightarrow e^x -(1+x+frac{x^2}{2}) = sum_{color{blue}{n=3}}^{infty} frac{x^n}{n!} = sum_{color{blue}{n=1}}^{infty} frac{x^{n+2}}{(n+2)!}$
- $Rightarrow f(x) = frac{e^x -(1+x+frac{x^2}{2})}{x^2} = sum_{n=1}^{infty} frac{x^{n}}{(n+2)!}$
$Rightarrow 2xf''(x) = boxed{2sum_{n=1}^{infty} frac{x^{n-1}n(n-1)}{(n+2)!}}$. This is your sum for $x=3$.- $Rightarrow 2xf''(x) = 2x frac{e^x(x^2-4x+6)-2(x+3)}{x^4}= 2frac{e^x(x^2-4x+6)-2(x+3)}{x^3}$
- $x= 3 Rightarrow boxed{2sum_{n=1}^{infty} frac{3^{n-1}n(n-1)}{(n+2)!} =frac{2}{9}(e^3-4)}$
$endgroup$
1
$begingroup$
I couldn't resist saying this is very elegant
$endgroup$
– roman
Jan 18 at 14:42
add a comment |
$begingroup$
You may proceed as follows:
- $e^x = sum_{n=0}^{infty}frac{x^n}{n!} Rightarrow e^x -(1+x+frac{x^2}{2}) = sum_{color{blue}{n=3}}^{infty} frac{x^n}{n!} = sum_{color{blue}{n=1}}^{infty} frac{x^{n+2}}{(n+2)!}$
- $Rightarrow f(x) = frac{e^x -(1+x+frac{x^2}{2})}{x^2} = sum_{n=1}^{infty} frac{x^{n}}{(n+2)!}$
$Rightarrow 2xf''(x) = boxed{2sum_{n=1}^{infty} frac{x^{n-1}n(n-1)}{(n+2)!}}$. This is your sum for $x=3$.- $Rightarrow 2xf''(x) = 2x frac{e^x(x^2-4x+6)-2(x+3)}{x^4}= 2frac{e^x(x^2-4x+6)-2(x+3)}{x^3}$
- $x= 3 Rightarrow boxed{2sum_{n=1}^{infty} frac{3^{n-1}n(n-1)}{(n+2)!} =frac{2}{9}(e^3-4)}$
$endgroup$
1
$begingroup$
I couldn't resist saying this is very elegant
$endgroup$
– roman
Jan 18 at 14:42
add a comment |
$begingroup$
You may proceed as follows:
- $e^x = sum_{n=0}^{infty}frac{x^n}{n!} Rightarrow e^x -(1+x+frac{x^2}{2}) = sum_{color{blue}{n=3}}^{infty} frac{x^n}{n!} = sum_{color{blue}{n=1}}^{infty} frac{x^{n+2}}{(n+2)!}$
- $Rightarrow f(x) = frac{e^x -(1+x+frac{x^2}{2})}{x^2} = sum_{n=1}^{infty} frac{x^{n}}{(n+2)!}$
$Rightarrow 2xf''(x) = boxed{2sum_{n=1}^{infty} frac{x^{n-1}n(n-1)}{(n+2)!}}$. This is your sum for $x=3$.- $Rightarrow 2xf''(x) = 2x frac{e^x(x^2-4x+6)-2(x+3)}{x^4}= 2frac{e^x(x^2-4x+6)-2(x+3)}{x^3}$
- $x= 3 Rightarrow boxed{2sum_{n=1}^{infty} frac{3^{n-1}n(n-1)}{(n+2)!} =frac{2}{9}(e^3-4)}$
$endgroup$
You may proceed as follows:
- $e^x = sum_{n=0}^{infty}frac{x^n}{n!} Rightarrow e^x -(1+x+frac{x^2}{2}) = sum_{color{blue}{n=3}}^{infty} frac{x^n}{n!} = sum_{color{blue}{n=1}}^{infty} frac{x^{n+2}}{(n+2)!}$
- $Rightarrow f(x) = frac{e^x -(1+x+frac{x^2}{2})}{x^2} = sum_{n=1}^{infty} frac{x^{n}}{(n+2)!}$
$Rightarrow 2xf''(x) = boxed{2sum_{n=1}^{infty} frac{x^{n-1}n(n-1)}{(n+2)!}}$. This is your sum for $x=3$.- $Rightarrow 2xf''(x) = 2x frac{e^x(x^2-4x+6)-2(x+3)}{x^4}= 2frac{e^x(x^2-4x+6)-2(x+3)}{x^3}$
- $x= 3 Rightarrow boxed{2sum_{n=1}^{infty} frac{3^{n-1}n(n-1)}{(n+2)!} =frac{2}{9}(e^3-4)}$
answered Jan 18 at 14:12
trancelocationtrancelocation
10.5k1722
10.5k1722
1
$begingroup$
I couldn't resist saying this is very elegant
$endgroup$
– roman
Jan 18 at 14:42
add a comment |
1
$begingroup$
I couldn't resist saying this is very elegant
$endgroup$
– roman
Jan 18 at 14:42
1
1
$begingroup$
I couldn't resist saying this is very elegant
$endgroup$
– roman
Jan 18 at 14:42
$begingroup$
I couldn't resist saying this is very elegant
$endgroup$
– roman
Jan 18 at 14:42
add a comment |
$begingroup$
Hint:
Write $n(n-1)=(n+2)(n+1)+A(n+2)+B$
$iff n^2-n=n^2+n(3+A)+2A+B+2$
$3+A=-1iff A=-4,2A+B+2=0iff B=-2-2A=-2-2(-4)=6$
Use $sum_{r=0}^inftydfrac{y^r}{r!}=e^y$
$$dfrac{x^{n-1}n(n-1)}{(n+2)!}$$
$$=x^{n-1}cdotdfrac{ (n+2)(n+1)-4(n+2)+6}{(n+2)!} =dfrac1xcdotdfrac{x^n}{n!}-dfrac4{x^2}cdotdfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}cdotdfrac{x^{n+2}}{(n+2)!}$$
$$impliessum_{n=1}^inftydfrac{x^{n-1}n(n-1)}{(n+2)!}=dfrac1xsum_{n=1}^inftydfrac{x^n}{n!}-dfrac4{x^2}sum_{n=1}^inftydfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}sum_{n=1}^inftydfrac{x^{n+2}}{(n+2)!}$$
$$=dfrac1xleft(e^x-1right)-dfrac4{x^2}left(e^x-1-dfrac x1right)+dfrac6{x^3}left(e^x-1-dfrac x1-dfrac{x^2}{2!}right)$$
$$=e^xleft(dfrac1x-dfrac4{x^2}+dfrac6{x^3}right)+dfrac1xleft(-1+4-3right)+dfrac1{x^2}left(4+6right)-dfrac6{x^3}$$
Here $x=3$
$endgroup$
$begingroup$
See also : math.stackexchange.com/questions/2638073/…
$endgroup$
– lab bhattacharjee
Jan 19 at 4:02
add a comment |
$begingroup$
Hint:
Write $n(n-1)=(n+2)(n+1)+A(n+2)+B$
$iff n^2-n=n^2+n(3+A)+2A+B+2$
$3+A=-1iff A=-4,2A+B+2=0iff B=-2-2A=-2-2(-4)=6$
Use $sum_{r=0}^inftydfrac{y^r}{r!}=e^y$
$$dfrac{x^{n-1}n(n-1)}{(n+2)!}$$
$$=x^{n-1}cdotdfrac{ (n+2)(n+1)-4(n+2)+6}{(n+2)!} =dfrac1xcdotdfrac{x^n}{n!}-dfrac4{x^2}cdotdfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}cdotdfrac{x^{n+2}}{(n+2)!}$$
$$impliessum_{n=1}^inftydfrac{x^{n-1}n(n-1)}{(n+2)!}=dfrac1xsum_{n=1}^inftydfrac{x^n}{n!}-dfrac4{x^2}sum_{n=1}^inftydfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}sum_{n=1}^inftydfrac{x^{n+2}}{(n+2)!}$$
$$=dfrac1xleft(e^x-1right)-dfrac4{x^2}left(e^x-1-dfrac x1right)+dfrac6{x^3}left(e^x-1-dfrac x1-dfrac{x^2}{2!}right)$$
$$=e^xleft(dfrac1x-dfrac4{x^2}+dfrac6{x^3}right)+dfrac1xleft(-1+4-3right)+dfrac1{x^2}left(4+6right)-dfrac6{x^3}$$
Here $x=3$
$endgroup$
$begingroup$
See also : math.stackexchange.com/questions/2638073/…
$endgroup$
– lab bhattacharjee
Jan 19 at 4:02
add a comment |
$begingroup$
Hint:
Write $n(n-1)=(n+2)(n+1)+A(n+2)+B$
$iff n^2-n=n^2+n(3+A)+2A+B+2$
$3+A=-1iff A=-4,2A+B+2=0iff B=-2-2A=-2-2(-4)=6$
Use $sum_{r=0}^inftydfrac{y^r}{r!}=e^y$
$$dfrac{x^{n-1}n(n-1)}{(n+2)!}$$
$$=x^{n-1}cdotdfrac{ (n+2)(n+1)-4(n+2)+6}{(n+2)!} =dfrac1xcdotdfrac{x^n}{n!}-dfrac4{x^2}cdotdfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}cdotdfrac{x^{n+2}}{(n+2)!}$$
$$impliessum_{n=1}^inftydfrac{x^{n-1}n(n-1)}{(n+2)!}=dfrac1xsum_{n=1}^inftydfrac{x^n}{n!}-dfrac4{x^2}sum_{n=1}^inftydfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}sum_{n=1}^inftydfrac{x^{n+2}}{(n+2)!}$$
$$=dfrac1xleft(e^x-1right)-dfrac4{x^2}left(e^x-1-dfrac x1right)+dfrac6{x^3}left(e^x-1-dfrac x1-dfrac{x^2}{2!}right)$$
$$=e^xleft(dfrac1x-dfrac4{x^2}+dfrac6{x^3}right)+dfrac1xleft(-1+4-3right)+dfrac1{x^2}left(4+6right)-dfrac6{x^3}$$
Here $x=3$
$endgroup$
Hint:
Write $n(n-1)=(n+2)(n+1)+A(n+2)+B$
$iff n^2-n=n^2+n(3+A)+2A+B+2$
$3+A=-1iff A=-4,2A+B+2=0iff B=-2-2A=-2-2(-4)=6$
Use $sum_{r=0}^inftydfrac{y^r}{r!}=e^y$
$$dfrac{x^{n-1}n(n-1)}{(n+2)!}$$
$$=x^{n-1}cdotdfrac{ (n+2)(n+1)-4(n+2)+6}{(n+2)!} =dfrac1xcdotdfrac{x^n}{n!}-dfrac4{x^2}cdotdfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}cdotdfrac{x^{n+2}}{(n+2)!}$$
$$impliessum_{n=1}^inftydfrac{x^{n-1}n(n-1)}{(n+2)!}=dfrac1xsum_{n=1}^inftydfrac{x^n}{n!}-dfrac4{x^2}sum_{n=1}^inftydfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}sum_{n=1}^inftydfrac{x^{n+2}}{(n+2)!}$$
$$=dfrac1xleft(e^x-1right)-dfrac4{x^2}left(e^x-1-dfrac x1right)+dfrac6{x^3}left(e^x-1-dfrac x1-dfrac{x^2}{2!}right)$$
$$=e^xleft(dfrac1x-dfrac4{x^2}+dfrac6{x^3}right)+dfrac1xleft(-1+4-3right)+dfrac1{x^2}left(4+6right)-dfrac6{x^3}$$
Here $x=3$
edited Jan 18 at 16:23
answered Jan 18 at 13:48
lab bhattacharjeelab bhattacharjee
225k15156274
225k15156274
$begingroup$
See also : math.stackexchange.com/questions/2638073/…
$endgroup$
– lab bhattacharjee
Jan 19 at 4:02
add a comment |
$begingroup$
See also : math.stackexchange.com/questions/2638073/…
$endgroup$
– lab bhattacharjee
Jan 19 at 4:02
$begingroup$
See also : math.stackexchange.com/questions/2638073/…
$endgroup$
– lab bhattacharjee
Jan 19 at 4:02
$begingroup$
See also : math.stackexchange.com/questions/2638073/…
$endgroup$
– lab bhattacharjee
Jan 19 at 4:02
add a comment |