Calculating an infinite sum: $sumlimits_{n=1}^{infty} 2frac{3^{n-1}n(n-1)}{(n+2)(n+1)!}$ [closed]












1












$begingroup$


I need to calculate the following formula



$$sum_{n=1}^{infty} 2frac{3^{n-1}n(n-1)}{(n+2)(n+1)!}$$



I know that this sum should be finite, but I don't know how to calculate it. I've done some simplifications and reductions but it get me nowhere. Please help me to calculate it.










share|cite|improve this question











$endgroup$



closed as off-topic by Simply Beautiful Art, José Carlos Santos, Holo, Did, RRL Jan 18 at 16:47


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Simply Beautiful Art, José Carlos Santos, Holo, Did, RRL

If this question can be reworded to fit the rules in the help center, please edit the question.





















    1












    $begingroup$


    I need to calculate the following formula



    $$sum_{n=1}^{infty} 2frac{3^{n-1}n(n-1)}{(n+2)(n+1)!}$$



    I know that this sum should be finite, but I don't know how to calculate it. I've done some simplifications and reductions but it get me nowhere. Please help me to calculate it.










    share|cite|improve this question











    $endgroup$



    closed as off-topic by Simply Beautiful Art, José Carlos Santos, Holo, Did, RRL Jan 18 at 16:47


    This question appears to be off-topic. The users who voted to close gave this specific reason:


    • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Simply Beautiful Art, José Carlos Santos, Holo, Did, RRL

    If this question can be reworded to fit the rules in the help center, please edit the question.



















      1












      1








      1


      1



      $begingroup$


      I need to calculate the following formula



      $$sum_{n=1}^{infty} 2frac{3^{n-1}n(n-1)}{(n+2)(n+1)!}$$



      I know that this sum should be finite, but I don't know how to calculate it. I've done some simplifications and reductions but it get me nowhere. Please help me to calculate it.










      share|cite|improve this question











      $endgroup$




      I need to calculate the following formula



      $$sum_{n=1}^{infty} 2frac{3^{n-1}n(n-1)}{(n+2)(n+1)!}$$



      I know that this sum should be finite, but I don't know how to calculate it. I've done some simplifications and reductions but it get me nowhere. Please help me to calculate it.







      calculus sequences-and-series power-series






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 18 at 15:20









      Martin Sleziak

      44.7k9117272




      44.7k9117272










      asked Jan 18 at 13:36









      Laina YabLaina Yab

      235




      235




      closed as off-topic by Simply Beautiful Art, José Carlos Santos, Holo, Did, RRL Jan 18 at 16:47


      This question appears to be off-topic. The users who voted to close gave this specific reason:


      • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Simply Beautiful Art, José Carlos Santos, Holo, Did, RRL

      If this question can be reworded to fit the rules in the help center, please edit the question.







      closed as off-topic by Simply Beautiful Art, José Carlos Santos, Holo, Did, RRL Jan 18 at 16:47


      This question appears to be off-topic. The users who voted to close gave this specific reason:


      • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Simply Beautiful Art, José Carlos Santos, Holo, Did, RRL

      If this question can be reworded to fit the rules in the help center, please edit the question.






















          2 Answers
          2






          active

          oldest

          votes


















          6












          $begingroup$

          You may proceed as follows:




          • $e^x = sum_{n=0}^{infty}frac{x^n}{n!} Rightarrow e^x -(1+x+frac{x^2}{2}) = sum_{color{blue}{n=3}}^{infty} frac{x^n}{n!} = sum_{color{blue}{n=1}}^{infty} frac{x^{n+2}}{(n+2)!}$

          • $Rightarrow f(x) = frac{e^x -(1+x+frac{x^2}{2})}{x^2} = sum_{n=1}^{infty} frac{x^{n}}{(n+2)!}$


          • $Rightarrow 2xf''(x) = boxed{2sum_{n=1}^{infty} frac{x^{n-1}n(n-1)}{(n+2)!}}$. This is your sum for $x=3$.

          • $Rightarrow 2xf''(x) = 2x frac{e^x(x^2-4x+6)-2(x+3)}{x^4}= 2frac{e^x(x^2-4x+6)-2(x+3)}{x^3}$

          • $x= 3 Rightarrow boxed{2sum_{n=1}^{infty} frac{3^{n-1}n(n-1)}{(n+2)!} =frac{2}{9}(e^3-4)}$






          share|cite|improve this answer









          $endgroup$









          • 1




            $begingroup$
            I couldn't resist saying this is very elegant
            $endgroup$
            – roman
            Jan 18 at 14:42



















          4












          $begingroup$

          Hint:



          Write $n(n-1)=(n+2)(n+1)+A(n+2)+B$



          $iff n^2-n=n^2+n(3+A)+2A+B+2$



          $3+A=-1iff A=-4,2A+B+2=0iff B=-2-2A=-2-2(-4)=6$



          Use $sum_{r=0}^inftydfrac{y^r}{r!}=e^y$



          $$dfrac{x^{n-1}n(n-1)}{(n+2)!}$$



          $$=x^{n-1}cdotdfrac{ (n+2)(n+1)-4(n+2)+6}{(n+2)!} =dfrac1xcdotdfrac{x^n}{n!}-dfrac4{x^2}cdotdfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}cdotdfrac{x^{n+2}}{(n+2)!}$$



          $$impliessum_{n=1}^inftydfrac{x^{n-1}n(n-1)}{(n+2)!}=dfrac1xsum_{n=1}^inftydfrac{x^n}{n!}-dfrac4{x^2}sum_{n=1}^inftydfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}sum_{n=1}^inftydfrac{x^{n+2}}{(n+2)!}$$



          $$=dfrac1xleft(e^x-1right)-dfrac4{x^2}left(e^x-1-dfrac x1right)+dfrac6{x^3}left(e^x-1-dfrac x1-dfrac{x^2}{2!}right)$$



          $$=e^xleft(dfrac1x-dfrac4{x^2}+dfrac6{x^3}right)+dfrac1xleft(-1+4-3right)+dfrac1{x^2}left(4+6right)-dfrac6{x^3}$$



          Here $x=3$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            See also : math.stackexchange.com/questions/2638073/…
            $endgroup$
            – lab bhattacharjee
            Jan 19 at 4:02


















          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          6












          $begingroup$

          You may proceed as follows:




          • $e^x = sum_{n=0}^{infty}frac{x^n}{n!} Rightarrow e^x -(1+x+frac{x^2}{2}) = sum_{color{blue}{n=3}}^{infty} frac{x^n}{n!} = sum_{color{blue}{n=1}}^{infty} frac{x^{n+2}}{(n+2)!}$

          • $Rightarrow f(x) = frac{e^x -(1+x+frac{x^2}{2})}{x^2} = sum_{n=1}^{infty} frac{x^{n}}{(n+2)!}$


          • $Rightarrow 2xf''(x) = boxed{2sum_{n=1}^{infty} frac{x^{n-1}n(n-1)}{(n+2)!}}$. This is your sum for $x=3$.

          • $Rightarrow 2xf''(x) = 2x frac{e^x(x^2-4x+6)-2(x+3)}{x^4}= 2frac{e^x(x^2-4x+6)-2(x+3)}{x^3}$

          • $x= 3 Rightarrow boxed{2sum_{n=1}^{infty} frac{3^{n-1}n(n-1)}{(n+2)!} =frac{2}{9}(e^3-4)}$






          share|cite|improve this answer









          $endgroup$









          • 1




            $begingroup$
            I couldn't resist saying this is very elegant
            $endgroup$
            – roman
            Jan 18 at 14:42
















          6












          $begingroup$

          You may proceed as follows:




          • $e^x = sum_{n=0}^{infty}frac{x^n}{n!} Rightarrow e^x -(1+x+frac{x^2}{2}) = sum_{color{blue}{n=3}}^{infty} frac{x^n}{n!} = sum_{color{blue}{n=1}}^{infty} frac{x^{n+2}}{(n+2)!}$

          • $Rightarrow f(x) = frac{e^x -(1+x+frac{x^2}{2})}{x^2} = sum_{n=1}^{infty} frac{x^{n}}{(n+2)!}$


          • $Rightarrow 2xf''(x) = boxed{2sum_{n=1}^{infty} frac{x^{n-1}n(n-1)}{(n+2)!}}$. This is your sum for $x=3$.

          • $Rightarrow 2xf''(x) = 2x frac{e^x(x^2-4x+6)-2(x+3)}{x^4}= 2frac{e^x(x^2-4x+6)-2(x+3)}{x^3}$

          • $x= 3 Rightarrow boxed{2sum_{n=1}^{infty} frac{3^{n-1}n(n-1)}{(n+2)!} =frac{2}{9}(e^3-4)}$






          share|cite|improve this answer









          $endgroup$









          • 1




            $begingroup$
            I couldn't resist saying this is very elegant
            $endgroup$
            – roman
            Jan 18 at 14:42














          6












          6








          6





          $begingroup$

          You may proceed as follows:




          • $e^x = sum_{n=0}^{infty}frac{x^n}{n!} Rightarrow e^x -(1+x+frac{x^2}{2}) = sum_{color{blue}{n=3}}^{infty} frac{x^n}{n!} = sum_{color{blue}{n=1}}^{infty} frac{x^{n+2}}{(n+2)!}$

          • $Rightarrow f(x) = frac{e^x -(1+x+frac{x^2}{2})}{x^2} = sum_{n=1}^{infty} frac{x^{n}}{(n+2)!}$


          • $Rightarrow 2xf''(x) = boxed{2sum_{n=1}^{infty} frac{x^{n-1}n(n-1)}{(n+2)!}}$. This is your sum for $x=3$.

          • $Rightarrow 2xf''(x) = 2x frac{e^x(x^2-4x+6)-2(x+3)}{x^4}= 2frac{e^x(x^2-4x+6)-2(x+3)}{x^3}$

          • $x= 3 Rightarrow boxed{2sum_{n=1}^{infty} frac{3^{n-1}n(n-1)}{(n+2)!} =frac{2}{9}(e^3-4)}$






          share|cite|improve this answer









          $endgroup$



          You may proceed as follows:




          • $e^x = sum_{n=0}^{infty}frac{x^n}{n!} Rightarrow e^x -(1+x+frac{x^2}{2}) = sum_{color{blue}{n=3}}^{infty} frac{x^n}{n!} = sum_{color{blue}{n=1}}^{infty} frac{x^{n+2}}{(n+2)!}$

          • $Rightarrow f(x) = frac{e^x -(1+x+frac{x^2}{2})}{x^2} = sum_{n=1}^{infty} frac{x^{n}}{(n+2)!}$


          • $Rightarrow 2xf''(x) = boxed{2sum_{n=1}^{infty} frac{x^{n-1}n(n-1)}{(n+2)!}}$. This is your sum for $x=3$.

          • $Rightarrow 2xf''(x) = 2x frac{e^x(x^2-4x+6)-2(x+3)}{x^4}= 2frac{e^x(x^2-4x+6)-2(x+3)}{x^3}$

          • $x= 3 Rightarrow boxed{2sum_{n=1}^{infty} frac{3^{n-1}n(n-1)}{(n+2)!} =frac{2}{9}(e^3-4)}$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 18 at 14:12









          trancelocationtrancelocation

          10.5k1722




          10.5k1722








          • 1




            $begingroup$
            I couldn't resist saying this is very elegant
            $endgroup$
            – roman
            Jan 18 at 14:42














          • 1




            $begingroup$
            I couldn't resist saying this is very elegant
            $endgroup$
            – roman
            Jan 18 at 14:42








          1




          1




          $begingroup$
          I couldn't resist saying this is very elegant
          $endgroup$
          – roman
          Jan 18 at 14:42




          $begingroup$
          I couldn't resist saying this is very elegant
          $endgroup$
          – roman
          Jan 18 at 14:42











          4












          $begingroup$

          Hint:



          Write $n(n-1)=(n+2)(n+1)+A(n+2)+B$



          $iff n^2-n=n^2+n(3+A)+2A+B+2$



          $3+A=-1iff A=-4,2A+B+2=0iff B=-2-2A=-2-2(-4)=6$



          Use $sum_{r=0}^inftydfrac{y^r}{r!}=e^y$



          $$dfrac{x^{n-1}n(n-1)}{(n+2)!}$$



          $$=x^{n-1}cdotdfrac{ (n+2)(n+1)-4(n+2)+6}{(n+2)!} =dfrac1xcdotdfrac{x^n}{n!}-dfrac4{x^2}cdotdfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}cdotdfrac{x^{n+2}}{(n+2)!}$$



          $$impliessum_{n=1}^inftydfrac{x^{n-1}n(n-1)}{(n+2)!}=dfrac1xsum_{n=1}^inftydfrac{x^n}{n!}-dfrac4{x^2}sum_{n=1}^inftydfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}sum_{n=1}^inftydfrac{x^{n+2}}{(n+2)!}$$



          $$=dfrac1xleft(e^x-1right)-dfrac4{x^2}left(e^x-1-dfrac x1right)+dfrac6{x^3}left(e^x-1-dfrac x1-dfrac{x^2}{2!}right)$$



          $$=e^xleft(dfrac1x-dfrac4{x^2}+dfrac6{x^3}right)+dfrac1xleft(-1+4-3right)+dfrac1{x^2}left(4+6right)-dfrac6{x^3}$$



          Here $x=3$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            See also : math.stackexchange.com/questions/2638073/…
            $endgroup$
            – lab bhattacharjee
            Jan 19 at 4:02
















          4












          $begingroup$

          Hint:



          Write $n(n-1)=(n+2)(n+1)+A(n+2)+B$



          $iff n^2-n=n^2+n(3+A)+2A+B+2$



          $3+A=-1iff A=-4,2A+B+2=0iff B=-2-2A=-2-2(-4)=6$



          Use $sum_{r=0}^inftydfrac{y^r}{r!}=e^y$



          $$dfrac{x^{n-1}n(n-1)}{(n+2)!}$$



          $$=x^{n-1}cdotdfrac{ (n+2)(n+1)-4(n+2)+6}{(n+2)!} =dfrac1xcdotdfrac{x^n}{n!}-dfrac4{x^2}cdotdfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}cdotdfrac{x^{n+2}}{(n+2)!}$$



          $$impliessum_{n=1}^inftydfrac{x^{n-1}n(n-1)}{(n+2)!}=dfrac1xsum_{n=1}^inftydfrac{x^n}{n!}-dfrac4{x^2}sum_{n=1}^inftydfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}sum_{n=1}^inftydfrac{x^{n+2}}{(n+2)!}$$



          $$=dfrac1xleft(e^x-1right)-dfrac4{x^2}left(e^x-1-dfrac x1right)+dfrac6{x^3}left(e^x-1-dfrac x1-dfrac{x^2}{2!}right)$$



          $$=e^xleft(dfrac1x-dfrac4{x^2}+dfrac6{x^3}right)+dfrac1xleft(-1+4-3right)+dfrac1{x^2}left(4+6right)-dfrac6{x^3}$$



          Here $x=3$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            See also : math.stackexchange.com/questions/2638073/…
            $endgroup$
            – lab bhattacharjee
            Jan 19 at 4:02














          4












          4








          4





          $begingroup$

          Hint:



          Write $n(n-1)=(n+2)(n+1)+A(n+2)+B$



          $iff n^2-n=n^2+n(3+A)+2A+B+2$



          $3+A=-1iff A=-4,2A+B+2=0iff B=-2-2A=-2-2(-4)=6$



          Use $sum_{r=0}^inftydfrac{y^r}{r!}=e^y$



          $$dfrac{x^{n-1}n(n-1)}{(n+2)!}$$



          $$=x^{n-1}cdotdfrac{ (n+2)(n+1)-4(n+2)+6}{(n+2)!} =dfrac1xcdotdfrac{x^n}{n!}-dfrac4{x^2}cdotdfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}cdotdfrac{x^{n+2}}{(n+2)!}$$



          $$impliessum_{n=1}^inftydfrac{x^{n-1}n(n-1)}{(n+2)!}=dfrac1xsum_{n=1}^inftydfrac{x^n}{n!}-dfrac4{x^2}sum_{n=1}^inftydfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}sum_{n=1}^inftydfrac{x^{n+2}}{(n+2)!}$$



          $$=dfrac1xleft(e^x-1right)-dfrac4{x^2}left(e^x-1-dfrac x1right)+dfrac6{x^3}left(e^x-1-dfrac x1-dfrac{x^2}{2!}right)$$



          $$=e^xleft(dfrac1x-dfrac4{x^2}+dfrac6{x^3}right)+dfrac1xleft(-1+4-3right)+dfrac1{x^2}left(4+6right)-dfrac6{x^3}$$



          Here $x=3$






          share|cite|improve this answer











          $endgroup$



          Hint:



          Write $n(n-1)=(n+2)(n+1)+A(n+2)+B$



          $iff n^2-n=n^2+n(3+A)+2A+B+2$



          $3+A=-1iff A=-4,2A+B+2=0iff B=-2-2A=-2-2(-4)=6$



          Use $sum_{r=0}^inftydfrac{y^r}{r!}=e^y$



          $$dfrac{x^{n-1}n(n-1)}{(n+2)!}$$



          $$=x^{n-1}cdotdfrac{ (n+2)(n+1)-4(n+2)+6}{(n+2)!} =dfrac1xcdotdfrac{x^n}{n!}-dfrac4{x^2}cdotdfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}cdotdfrac{x^{n+2}}{(n+2)!}$$



          $$impliessum_{n=1}^inftydfrac{x^{n-1}n(n-1)}{(n+2)!}=dfrac1xsum_{n=1}^inftydfrac{x^n}{n!}-dfrac4{x^2}sum_{n=1}^inftydfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}sum_{n=1}^inftydfrac{x^{n+2}}{(n+2)!}$$



          $$=dfrac1xleft(e^x-1right)-dfrac4{x^2}left(e^x-1-dfrac x1right)+dfrac6{x^3}left(e^x-1-dfrac x1-dfrac{x^2}{2!}right)$$



          $$=e^xleft(dfrac1x-dfrac4{x^2}+dfrac6{x^3}right)+dfrac1xleft(-1+4-3right)+dfrac1{x^2}left(4+6right)-dfrac6{x^3}$$



          Here $x=3$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 18 at 16:23

























          answered Jan 18 at 13:48









          lab bhattacharjeelab bhattacharjee

          225k15156274




          225k15156274












          • $begingroup$
            See also : math.stackexchange.com/questions/2638073/…
            $endgroup$
            – lab bhattacharjee
            Jan 19 at 4:02


















          • $begingroup$
            See also : math.stackexchange.com/questions/2638073/…
            $endgroup$
            – lab bhattacharjee
            Jan 19 at 4:02
















          $begingroup$
          See also : math.stackexchange.com/questions/2638073/…
          $endgroup$
          – lab bhattacharjee
          Jan 19 at 4:02




          $begingroup$
          See also : math.stackexchange.com/questions/2638073/…
          $endgroup$
          – lab bhattacharjee
          Jan 19 at 4:02



          Popular posts from this blog

          How to change which sound is reproduced for terminal bell?

          Can I use Tabulator js library in my java Spring + Thymeleaf project?

          Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents