What is the $n$-time iterated adjugate of an $ntimes n$ matrix $A$?
$begingroup$
What is $underbrace{text{adj}Big(text{adj}big(ldots(text{adj}}_{ntext{ adj}} A)ldotsbig)Big)$, where $text{adj}$ is written $n$ times, and the order of the matrix $A$ is $ntimes n$?
Can you show the proof for each $n$ (I mean by induction)!!
linear-algebra matrices induction matrix-equations function-and-relation-composition
$endgroup$
add a comment |
$begingroup$
What is $underbrace{text{adj}Big(text{adj}big(ldots(text{adj}}_{ntext{ adj}} A)ldotsbig)Big)$, where $text{adj}$ is written $n$ times, and the order of the matrix $A$ is $ntimes n$?
Can you show the proof for each $n$ (I mean by induction)!!
linear-algebra matrices induction matrix-equations function-and-relation-composition
$endgroup$
$begingroup$
i have till n =2 don't know how do further !!
$endgroup$
– user416571
Dec 13 '18 at 9:46
add a comment |
$begingroup$
What is $underbrace{text{adj}Big(text{adj}big(ldots(text{adj}}_{ntext{ adj}} A)ldotsbig)Big)$, where $text{adj}$ is written $n$ times, and the order of the matrix $A$ is $ntimes n$?
Can you show the proof for each $n$ (I mean by induction)!!
linear-algebra matrices induction matrix-equations function-and-relation-composition
$endgroup$
What is $underbrace{text{adj}Big(text{adj}big(ldots(text{adj}}_{ntext{ adj}} A)ldotsbig)Big)$, where $text{adj}$ is written $n$ times, and the order of the matrix $A$ is $ntimes n$?
Can you show the proof for each $n$ (I mean by induction)!!
linear-algebra matrices induction matrix-equations function-and-relation-composition
linear-algebra matrices induction matrix-equations function-and-relation-composition
edited Dec 13 '18 at 11:37
Batominovski
33.2k33293
33.2k33293
asked Dec 13 '18 at 9:44
user416571user416571
414
414
$begingroup$
i have till n =2 don't know how do further !!
$endgroup$
– user416571
Dec 13 '18 at 9:46
add a comment |
$begingroup$
i have till n =2 don't know how do further !!
$endgroup$
– user416571
Dec 13 '18 at 9:46
$begingroup$
i have till n =2 don't know how do further !!
$endgroup$
– user416571
Dec 13 '18 at 9:46
$begingroup$
i have till n =2 don't know how do further !!
$endgroup$
– user416571
Dec 13 '18 at 9:46
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint. For any integer $ngeq 2$, for any $n$-by-$n$ matrix $X$, and for each scalar $k$, show that
$$text{adj}(k,X)=k^{n-1},text{adj}(X),,$$ $$detbig(text{adj}(X)big)=big(det(X)big)^{n-1},,$$ and $$text{adj}big(text{adj}(X)big)=big(det(X)big)^{n-2} X,.$$ Here, $0^0:=1$. (For $n=1$, $text{adj}(X)=1$ always.)
For each $minmathbb{Z}_{geq 0}$, let $text{adj}^m$ be the $m$-time iteration of $text{adj}$. Then, for any $n$-by-$n$ matrix $A$, $$text{adj}^m(A)=begin{cases}big(det(A)big)^{frac{(n-1)^{m}-1}{n}},A&text{if }mtext{ is even},, \ big(det(A)big)^{frac{(n-1)^{m}-(n-1)}{n}},text{adj}(A)&text{if }mtext{ is odd},. end{cases}tag{*}$$ For $n=1$, $$text{adj}^0(A)=A,,text{ and }text{adj}^m(A)=1text{ for any }minmathbb{Z}_{>0},.$$ For $n=2$, $$text{adj}^m(A)=begin{cases}A&text{if }mtext{ is even},, \ text{adj}(A)&text{if }mtext{ is odd},. end{cases}$$ Clearly, if $ngeq 3$ and $det(A)=0$, then $$text{adj}^0(A)=A,,,, text{adj}^1(A)=text{adj}(A),,text{ and }text{adj}^m(A)=0text{ for all }mgeq 2,.$$ If $det(A)neq 0$, then you may simplify (*) to $$text{adj}^m(A)=big(det(A)big)^{frac{(n-1)^{m}-(-1)^m}{n}},A^{(-1)^m}text{ for every }minmathbb{Z}_{geq 0},.$$ In particular, $$text{adj}^n(A)=begin{cases}big(det(A)big)^{frac{(n-1)^{n}-1}{n}},A&text{if }ntext{ is even},, \ big(det(A)big)^{frac{(n-1)^{n}-(n-1)}{n}},text{adj}(A)&text{if }ntext{ is odd},. end{cases}$$
$endgroup$
add a comment |
$begingroup$
Hint. We know that
$$
mathrm{adj},Acdot A=det Acdot I, tag{1}
$$
and hence, if $det Ane 0$,
$$
mathrm{adj},A=det A cdot A^{-1},
$$
and
$$
det(mathrm{adj},A)cdot det A=(det A)^n.
$$
Hence $det(mathrm{adj},A)=(det A)^{n-1}$.
Now $(1)$ implies that
$$
mathrm{adj}(mathrm{adj},A)cdot mathrm{adj},A=det (mathrm{adj},A)cdot I
=(det A)^{n-1}I,
$$
and hence
$$
mathrm{adj}(mathrm{adj},A)=(det A)^{n-1}cdot(mathrm{adj},A)^{-1}=(det A)^ncdot A
$$
and
$$
detbig(mathrm{adj}(mathrm{adj},A)big)=big(det(mathrm{adj},A)big)^{n-1}=(det A)^{(n-1)^2}, quad det(mathrm{adj}^k,A)=(det A)^{(n-1)^k}
tag{2}$$
and
$$
mathrm{adj}^{k+1},Acdot mathrm{adj}^{k},A=det (mathrm{adj}^k,A)cdot I
=(det A)^{(n-1)^k}I, tag{3}
$$
Finally, we obtain that:
$$
mathrm{adj}^{2k}A=c_{k}A, quad mathrm{adj}^{2k+1}A=d_{k}A^{-1}
$$
where $c_k,d_k$ can be obtained from (2) and (3).
$endgroup$
1
$begingroup$
What about $det A=0$?
$endgroup$
– Christoph
Dec 13 '18 at 10:40
1
$begingroup$
The $mathrm{adj}^k A$, are still defined in the same exactly way, using a density argument, since the invertible matrices are dense in the set of all square matrices.
$endgroup$
– Yiorgos S. Smyrlis
Dec 13 '18 at 10:50
5
$begingroup$
I think you made a mistake at the beginning. $operatorname{adj}(A) = det(A),A^{-1}$, not $frac{1}{det(A)},A^{-1}$.
$endgroup$
– Christoph
Dec 13 '18 at 10:59
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037812%2fwhat-is-the-n-time-iterated-adjugate-of-an-n-times-n-matrix-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint. For any integer $ngeq 2$, for any $n$-by-$n$ matrix $X$, and for each scalar $k$, show that
$$text{adj}(k,X)=k^{n-1},text{adj}(X),,$$ $$detbig(text{adj}(X)big)=big(det(X)big)^{n-1},,$$ and $$text{adj}big(text{adj}(X)big)=big(det(X)big)^{n-2} X,.$$ Here, $0^0:=1$. (For $n=1$, $text{adj}(X)=1$ always.)
For each $minmathbb{Z}_{geq 0}$, let $text{adj}^m$ be the $m$-time iteration of $text{adj}$. Then, for any $n$-by-$n$ matrix $A$, $$text{adj}^m(A)=begin{cases}big(det(A)big)^{frac{(n-1)^{m}-1}{n}},A&text{if }mtext{ is even},, \ big(det(A)big)^{frac{(n-1)^{m}-(n-1)}{n}},text{adj}(A)&text{if }mtext{ is odd},. end{cases}tag{*}$$ For $n=1$, $$text{adj}^0(A)=A,,text{ and }text{adj}^m(A)=1text{ for any }minmathbb{Z}_{>0},.$$ For $n=2$, $$text{adj}^m(A)=begin{cases}A&text{if }mtext{ is even},, \ text{adj}(A)&text{if }mtext{ is odd},. end{cases}$$ Clearly, if $ngeq 3$ and $det(A)=0$, then $$text{adj}^0(A)=A,,,, text{adj}^1(A)=text{adj}(A),,text{ and }text{adj}^m(A)=0text{ for all }mgeq 2,.$$ If $det(A)neq 0$, then you may simplify (*) to $$text{adj}^m(A)=big(det(A)big)^{frac{(n-1)^{m}-(-1)^m}{n}},A^{(-1)^m}text{ for every }minmathbb{Z}_{geq 0},.$$ In particular, $$text{adj}^n(A)=begin{cases}big(det(A)big)^{frac{(n-1)^{n}-1}{n}},A&text{if }ntext{ is even},, \ big(det(A)big)^{frac{(n-1)^{n}-(n-1)}{n}},text{adj}(A)&text{if }ntext{ is odd},. end{cases}$$
$endgroup$
add a comment |
$begingroup$
Hint. For any integer $ngeq 2$, for any $n$-by-$n$ matrix $X$, and for each scalar $k$, show that
$$text{adj}(k,X)=k^{n-1},text{adj}(X),,$$ $$detbig(text{adj}(X)big)=big(det(X)big)^{n-1},,$$ and $$text{adj}big(text{adj}(X)big)=big(det(X)big)^{n-2} X,.$$ Here, $0^0:=1$. (For $n=1$, $text{adj}(X)=1$ always.)
For each $minmathbb{Z}_{geq 0}$, let $text{adj}^m$ be the $m$-time iteration of $text{adj}$. Then, for any $n$-by-$n$ matrix $A$, $$text{adj}^m(A)=begin{cases}big(det(A)big)^{frac{(n-1)^{m}-1}{n}},A&text{if }mtext{ is even},, \ big(det(A)big)^{frac{(n-1)^{m}-(n-1)}{n}},text{adj}(A)&text{if }mtext{ is odd},. end{cases}tag{*}$$ For $n=1$, $$text{adj}^0(A)=A,,text{ and }text{adj}^m(A)=1text{ for any }minmathbb{Z}_{>0},.$$ For $n=2$, $$text{adj}^m(A)=begin{cases}A&text{if }mtext{ is even},, \ text{adj}(A)&text{if }mtext{ is odd},. end{cases}$$ Clearly, if $ngeq 3$ and $det(A)=0$, then $$text{adj}^0(A)=A,,,, text{adj}^1(A)=text{adj}(A),,text{ and }text{adj}^m(A)=0text{ for all }mgeq 2,.$$ If $det(A)neq 0$, then you may simplify (*) to $$text{adj}^m(A)=big(det(A)big)^{frac{(n-1)^{m}-(-1)^m}{n}},A^{(-1)^m}text{ for every }minmathbb{Z}_{geq 0},.$$ In particular, $$text{adj}^n(A)=begin{cases}big(det(A)big)^{frac{(n-1)^{n}-1}{n}},A&text{if }ntext{ is even},, \ big(det(A)big)^{frac{(n-1)^{n}-(n-1)}{n}},text{adj}(A)&text{if }ntext{ is odd},. end{cases}$$
$endgroup$
add a comment |
$begingroup$
Hint. For any integer $ngeq 2$, for any $n$-by-$n$ matrix $X$, and for each scalar $k$, show that
$$text{adj}(k,X)=k^{n-1},text{adj}(X),,$$ $$detbig(text{adj}(X)big)=big(det(X)big)^{n-1},,$$ and $$text{adj}big(text{adj}(X)big)=big(det(X)big)^{n-2} X,.$$ Here, $0^0:=1$. (For $n=1$, $text{adj}(X)=1$ always.)
For each $minmathbb{Z}_{geq 0}$, let $text{adj}^m$ be the $m$-time iteration of $text{adj}$. Then, for any $n$-by-$n$ matrix $A$, $$text{adj}^m(A)=begin{cases}big(det(A)big)^{frac{(n-1)^{m}-1}{n}},A&text{if }mtext{ is even},, \ big(det(A)big)^{frac{(n-1)^{m}-(n-1)}{n}},text{adj}(A)&text{if }mtext{ is odd},. end{cases}tag{*}$$ For $n=1$, $$text{adj}^0(A)=A,,text{ and }text{adj}^m(A)=1text{ for any }minmathbb{Z}_{>0},.$$ For $n=2$, $$text{adj}^m(A)=begin{cases}A&text{if }mtext{ is even},, \ text{adj}(A)&text{if }mtext{ is odd},. end{cases}$$ Clearly, if $ngeq 3$ and $det(A)=0$, then $$text{adj}^0(A)=A,,,, text{adj}^1(A)=text{adj}(A),,text{ and }text{adj}^m(A)=0text{ for all }mgeq 2,.$$ If $det(A)neq 0$, then you may simplify (*) to $$text{adj}^m(A)=big(det(A)big)^{frac{(n-1)^{m}-(-1)^m}{n}},A^{(-1)^m}text{ for every }minmathbb{Z}_{geq 0},.$$ In particular, $$text{adj}^n(A)=begin{cases}big(det(A)big)^{frac{(n-1)^{n}-1}{n}},A&text{if }ntext{ is even},, \ big(det(A)big)^{frac{(n-1)^{n}-(n-1)}{n}},text{adj}(A)&text{if }ntext{ is odd},. end{cases}$$
$endgroup$
Hint. For any integer $ngeq 2$, for any $n$-by-$n$ matrix $X$, and for each scalar $k$, show that
$$text{adj}(k,X)=k^{n-1},text{adj}(X),,$$ $$detbig(text{adj}(X)big)=big(det(X)big)^{n-1},,$$ and $$text{adj}big(text{adj}(X)big)=big(det(X)big)^{n-2} X,.$$ Here, $0^0:=1$. (For $n=1$, $text{adj}(X)=1$ always.)
For each $minmathbb{Z}_{geq 0}$, let $text{adj}^m$ be the $m$-time iteration of $text{adj}$. Then, for any $n$-by-$n$ matrix $A$, $$text{adj}^m(A)=begin{cases}big(det(A)big)^{frac{(n-1)^{m}-1}{n}},A&text{if }mtext{ is even},, \ big(det(A)big)^{frac{(n-1)^{m}-(n-1)}{n}},text{adj}(A)&text{if }mtext{ is odd},. end{cases}tag{*}$$ For $n=1$, $$text{adj}^0(A)=A,,text{ and }text{adj}^m(A)=1text{ for any }minmathbb{Z}_{>0},.$$ For $n=2$, $$text{adj}^m(A)=begin{cases}A&text{if }mtext{ is even},, \ text{adj}(A)&text{if }mtext{ is odd},. end{cases}$$ Clearly, if $ngeq 3$ and $det(A)=0$, then $$text{adj}^0(A)=A,,,, text{adj}^1(A)=text{adj}(A),,text{ and }text{adj}^m(A)=0text{ for all }mgeq 2,.$$ If $det(A)neq 0$, then you may simplify (*) to $$text{adj}^m(A)=big(det(A)big)^{frac{(n-1)^{m}-(-1)^m}{n}},A^{(-1)^m}text{ for every }minmathbb{Z}_{geq 0},.$$ In particular, $$text{adj}^n(A)=begin{cases}big(det(A)big)^{frac{(n-1)^{n}-1}{n}},A&text{if }ntext{ is even},, \ big(det(A)big)^{frac{(n-1)^{n}-(n-1)}{n}},text{adj}(A)&text{if }ntext{ is odd},. end{cases}$$
edited Dec 13 '18 at 11:05
answered Dec 13 '18 at 10:31
BatominovskiBatominovski
33.2k33293
33.2k33293
add a comment |
add a comment |
$begingroup$
Hint. We know that
$$
mathrm{adj},Acdot A=det Acdot I, tag{1}
$$
and hence, if $det Ane 0$,
$$
mathrm{adj},A=det A cdot A^{-1},
$$
and
$$
det(mathrm{adj},A)cdot det A=(det A)^n.
$$
Hence $det(mathrm{adj},A)=(det A)^{n-1}$.
Now $(1)$ implies that
$$
mathrm{adj}(mathrm{adj},A)cdot mathrm{adj},A=det (mathrm{adj},A)cdot I
=(det A)^{n-1}I,
$$
and hence
$$
mathrm{adj}(mathrm{adj},A)=(det A)^{n-1}cdot(mathrm{adj},A)^{-1}=(det A)^ncdot A
$$
and
$$
detbig(mathrm{adj}(mathrm{adj},A)big)=big(det(mathrm{adj},A)big)^{n-1}=(det A)^{(n-1)^2}, quad det(mathrm{adj}^k,A)=(det A)^{(n-1)^k}
tag{2}$$
and
$$
mathrm{adj}^{k+1},Acdot mathrm{adj}^{k},A=det (mathrm{adj}^k,A)cdot I
=(det A)^{(n-1)^k}I, tag{3}
$$
Finally, we obtain that:
$$
mathrm{adj}^{2k}A=c_{k}A, quad mathrm{adj}^{2k+1}A=d_{k}A^{-1}
$$
where $c_k,d_k$ can be obtained from (2) and (3).
$endgroup$
1
$begingroup$
What about $det A=0$?
$endgroup$
– Christoph
Dec 13 '18 at 10:40
1
$begingroup$
The $mathrm{adj}^k A$, are still defined in the same exactly way, using a density argument, since the invertible matrices are dense in the set of all square matrices.
$endgroup$
– Yiorgos S. Smyrlis
Dec 13 '18 at 10:50
5
$begingroup$
I think you made a mistake at the beginning. $operatorname{adj}(A) = det(A),A^{-1}$, not $frac{1}{det(A)},A^{-1}$.
$endgroup$
– Christoph
Dec 13 '18 at 10:59
add a comment |
$begingroup$
Hint. We know that
$$
mathrm{adj},Acdot A=det Acdot I, tag{1}
$$
and hence, if $det Ane 0$,
$$
mathrm{adj},A=det A cdot A^{-1},
$$
and
$$
det(mathrm{adj},A)cdot det A=(det A)^n.
$$
Hence $det(mathrm{adj},A)=(det A)^{n-1}$.
Now $(1)$ implies that
$$
mathrm{adj}(mathrm{adj},A)cdot mathrm{adj},A=det (mathrm{adj},A)cdot I
=(det A)^{n-1}I,
$$
and hence
$$
mathrm{adj}(mathrm{adj},A)=(det A)^{n-1}cdot(mathrm{adj},A)^{-1}=(det A)^ncdot A
$$
and
$$
detbig(mathrm{adj}(mathrm{adj},A)big)=big(det(mathrm{adj},A)big)^{n-1}=(det A)^{(n-1)^2}, quad det(mathrm{adj}^k,A)=(det A)^{(n-1)^k}
tag{2}$$
and
$$
mathrm{adj}^{k+1},Acdot mathrm{adj}^{k},A=det (mathrm{adj}^k,A)cdot I
=(det A)^{(n-1)^k}I, tag{3}
$$
Finally, we obtain that:
$$
mathrm{adj}^{2k}A=c_{k}A, quad mathrm{adj}^{2k+1}A=d_{k}A^{-1}
$$
where $c_k,d_k$ can be obtained from (2) and (3).
$endgroup$
1
$begingroup$
What about $det A=0$?
$endgroup$
– Christoph
Dec 13 '18 at 10:40
1
$begingroup$
The $mathrm{adj}^k A$, are still defined in the same exactly way, using a density argument, since the invertible matrices are dense in the set of all square matrices.
$endgroup$
– Yiorgos S. Smyrlis
Dec 13 '18 at 10:50
5
$begingroup$
I think you made a mistake at the beginning. $operatorname{adj}(A) = det(A),A^{-1}$, not $frac{1}{det(A)},A^{-1}$.
$endgroup$
– Christoph
Dec 13 '18 at 10:59
add a comment |
$begingroup$
Hint. We know that
$$
mathrm{adj},Acdot A=det Acdot I, tag{1}
$$
and hence, if $det Ane 0$,
$$
mathrm{adj},A=det A cdot A^{-1},
$$
and
$$
det(mathrm{adj},A)cdot det A=(det A)^n.
$$
Hence $det(mathrm{adj},A)=(det A)^{n-1}$.
Now $(1)$ implies that
$$
mathrm{adj}(mathrm{adj},A)cdot mathrm{adj},A=det (mathrm{adj},A)cdot I
=(det A)^{n-1}I,
$$
and hence
$$
mathrm{adj}(mathrm{adj},A)=(det A)^{n-1}cdot(mathrm{adj},A)^{-1}=(det A)^ncdot A
$$
and
$$
detbig(mathrm{adj}(mathrm{adj},A)big)=big(det(mathrm{adj},A)big)^{n-1}=(det A)^{(n-1)^2}, quad det(mathrm{adj}^k,A)=(det A)^{(n-1)^k}
tag{2}$$
and
$$
mathrm{adj}^{k+1},Acdot mathrm{adj}^{k},A=det (mathrm{adj}^k,A)cdot I
=(det A)^{(n-1)^k}I, tag{3}
$$
Finally, we obtain that:
$$
mathrm{adj}^{2k}A=c_{k}A, quad mathrm{adj}^{2k+1}A=d_{k}A^{-1}
$$
where $c_k,d_k$ can be obtained from (2) and (3).
$endgroup$
Hint. We know that
$$
mathrm{adj},Acdot A=det Acdot I, tag{1}
$$
and hence, if $det Ane 0$,
$$
mathrm{adj},A=det A cdot A^{-1},
$$
and
$$
det(mathrm{adj},A)cdot det A=(det A)^n.
$$
Hence $det(mathrm{adj},A)=(det A)^{n-1}$.
Now $(1)$ implies that
$$
mathrm{adj}(mathrm{adj},A)cdot mathrm{adj},A=det (mathrm{adj},A)cdot I
=(det A)^{n-1}I,
$$
and hence
$$
mathrm{adj}(mathrm{adj},A)=(det A)^{n-1}cdot(mathrm{adj},A)^{-1}=(det A)^ncdot A
$$
and
$$
detbig(mathrm{adj}(mathrm{adj},A)big)=big(det(mathrm{adj},A)big)^{n-1}=(det A)^{(n-1)^2}, quad det(mathrm{adj}^k,A)=(det A)^{(n-1)^k}
tag{2}$$
and
$$
mathrm{adj}^{k+1},Acdot mathrm{adj}^{k},A=det (mathrm{adj}^k,A)cdot I
=(det A)^{(n-1)^k}I, tag{3}
$$
Finally, we obtain that:
$$
mathrm{adj}^{2k}A=c_{k}A, quad mathrm{adj}^{2k+1}A=d_{k}A^{-1}
$$
where $c_k,d_k$ can be obtained from (2) and (3).
edited Dec 15 '18 at 10:35
user416571
414
414
answered Dec 13 '18 at 10:31
Yiorgos S. SmyrlisYiorgos S. Smyrlis
63.7k1385165
63.7k1385165
1
$begingroup$
What about $det A=0$?
$endgroup$
– Christoph
Dec 13 '18 at 10:40
1
$begingroup$
The $mathrm{adj}^k A$, are still defined in the same exactly way, using a density argument, since the invertible matrices are dense in the set of all square matrices.
$endgroup$
– Yiorgos S. Smyrlis
Dec 13 '18 at 10:50
5
$begingroup$
I think you made a mistake at the beginning. $operatorname{adj}(A) = det(A),A^{-1}$, not $frac{1}{det(A)},A^{-1}$.
$endgroup$
– Christoph
Dec 13 '18 at 10:59
add a comment |
1
$begingroup$
What about $det A=0$?
$endgroup$
– Christoph
Dec 13 '18 at 10:40
1
$begingroup$
The $mathrm{adj}^k A$, are still defined in the same exactly way, using a density argument, since the invertible matrices are dense in the set of all square matrices.
$endgroup$
– Yiorgos S. Smyrlis
Dec 13 '18 at 10:50
5
$begingroup$
I think you made a mistake at the beginning. $operatorname{adj}(A) = det(A),A^{-1}$, not $frac{1}{det(A)},A^{-1}$.
$endgroup$
– Christoph
Dec 13 '18 at 10:59
1
1
$begingroup$
What about $det A=0$?
$endgroup$
– Christoph
Dec 13 '18 at 10:40
$begingroup$
What about $det A=0$?
$endgroup$
– Christoph
Dec 13 '18 at 10:40
1
1
$begingroup$
The $mathrm{adj}^k A$, are still defined in the same exactly way, using a density argument, since the invertible matrices are dense in the set of all square matrices.
$endgroup$
– Yiorgos S. Smyrlis
Dec 13 '18 at 10:50
$begingroup$
The $mathrm{adj}^k A$, are still defined in the same exactly way, using a density argument, since the invertible matrices are dense in the set of all square matrices.
$endgroup$
– Yiorgos S. Smyrlis
Dec 13 '18 at 10:50
5
5
$begingroup$
I think you made a mistake at the beginning. $operatorname{adj}(A) = det(A),A^{-1}$, not $frac{1}{det(A)},A^{-1}$.
$endgroup$
– Christoph
Dec 13 '18 at 10:59
$begingroup$
I think you made a mistake at the beginning. $operatorname{adj}(A) = det(A),A^{-1}$, not $frac{1}{det(A)},A^{-1}$.
$endgroup$
– Christoph
Dec 13 '18 at 10:59
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037812%2fwhat-is-the-n-time-iterated-adjugate-of-an-n-times-n-matrix-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
i have till n =2 don't know how do further !!
$endgroup$
– user416571
Dec 13 '18 at 9:46