What is the convex hull of $text{conv}(u_1,u_2,cdots,u_p)+text{conv}(v_1,v_2,cdots,v_s)$?
$begingroup$
Let $u_i, i= 1,cdots,p$ and $v_j, j= 1,cdots,s$ be finitely many vectors in $mathbb{R}^n$. Show that
$$
text{conv}(u_1,u_2,cdots,u_p)+text{conv}(v_1,v_2,cdots,v_s)=text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}
$$
We need to show
$$
x+y in text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}
$$
where $x in text{conv}(u_1,u_2,cdots,u_p)$ and $y in text{conv}(v_1,v_2,cdots,v_s)$. Also, we need to show
$$
z in text{conv}(u_1,u_2,cdots,u_p)+text{conv}(v_1,v_2,cdots,v_s)
$$
where $z in text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}$.
I have tried the following for the first one:
Let $x in text{conv}(u_1,u_2,cdots,u_p)$ so $x=sum_{i=1}^plambda_iu_i$ where $sum_{i=1}^plambda_i=1$. Also, Let $y in text{conv}(v_1,v_2,cdots,v_s)$ so $x=sum_{j=1}^smu_jv_j$ where $sum_{j=1}^smu_j=1$.
Summing them
$$x+y=lambda_1u_1+lambda_2u_2+cdots+lambda_pu_p+mu_1v_1+mu_2v_2+cdots+mu_sv_s.$$
Now the question is how we can get something in the form of $text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}$?
geometry vectors convex-analysis convex-geometry convex-hulls
$endgroup$
add a comment |
$begingroup$
Let $u_i, i= 1,cdots,p$ and $v_j, j= 1,cdots,s$ be finitely many vectors in $mathbb{R}^n$. Show that
$$
text{conv}(u_1,u_2,cdots,u_p)+text{conv}(v_1,v_2,cdots,v_s)=text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}
$$
We need to show
$$
x+y in text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}
$$
where $x in text{conv}(u_1,u_2,cdots,u_p)$ and $y in text{conv}(v_1,v_2,cdots,v_s)$. Also, we need to show
$$
z in text{conv}(u_1,u_2,cdots,u_p)+text{conv}(v_1,v_2,cdots,v_s)
$$
where $z in text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}$.
I have tried the following for the first one:
Let $x in text{conv}(u_1,u_2,cdots,u_p)$ so $x=sum_{i=1}^plambda_iu_i$ where $sum_{i=1}^plambda_i=1$. Also, Let $y in text{conv}(v_1,v_2,cdots,v_s)$ so $x=sum_{j=1}^smu_jv_j$ where $sum_{j=1}^smu_j=1$.
Summing them
$$x+y=lambda_1u_1+lambda_2u_2+cdots+lambda_pu_p+mu_1v_1+mu_2v_2+cdots+mu_sv_s.$$
Now the question is how we can get something in the form of $text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}$?
geometry vectors convex-analysis convex-geometry convex-hulls
$endgroup$
add a comment |
$begingroup$
Let $u_i, i= 1,cdots,p$ and $v_j, j= 1,cdots,s$ be finitely many vectors in $mathbb{R}^n$. Show that
$$
text{conv}(u_1,u_2,cdots,u_p)+text{conv}(v_1,v_2,cdots,v_s)=text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}
$$
We need to show
$$
x+y in text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}
$$
where $x in text{conv}(u_1,u_2,cdots,u_p)$ and $y in text{conv}(v_1,v_2,cdots,v_s)$. Also, we need to show
$$
z in text{conv}(u_1,u_2,cdots,u_p)+text{conv}(v_1,v_2,cdots,v_s)
$$
where $z in text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}$.
I have tried the following for the first one:
Let $x in text{conv}(u_1,u_2,cdots,u_p)$ so $x=sum_{i=1}^plambda_iu_i$ where $sum_{i=1}^plambda_i=1$. Also, Let $y in text{conv}(v_1,v_2,cdots,v_s)$ so $x=sum_{j=1}^smu_jv_j$ where $sum_{j=1}^smu_j=1$.
Summing them
$$x+y=lambda_1u_1+lambda_2u_2+cdots+lambda_pu_p+mu_1v_1+mu_2v_2+cdots+mu_sv_s.$$
Now the question is how we can get something in the form of $text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}$?
geometry vectors convex-analysis convex-geometry convex-hulls
$endgroup$
Let $u_i, i= 1,cdots,p$ and $v_j, j= 1,cdots,s$ be finitely many vectors in $mathbb{R}^n$. Show that
$$
text{conv}(u_1,u_2,cdots,u_p)+text{conv}(v_1,v_2,cdots,v_s)=text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}
$$
We need to show
$$
x+y in text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}
$$
where $x in text{conv}(u_1,u_2,cdots,u_p)$ and $y in text{conv}(v_1,v_2,cdots,v_s)$. Also, we need to show
$$
z in text{conv}(u_1,u_2,cdots,u_p)+text{conv}(v_1,v_2,cdots,v_s)
$$
where $z in text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}$.
I have tried the following for the first one:
Let $x in text{conv}(u_1,u_2,cdots,u_p)$ so $x=sum_{i=1}^plambda_iu_i$ where $sum_{i=1}^plambda_i=1$. Also, Let $y in text{conv}(v_1,v_2,cdots,v_s)$ so $x=sum_{j=1}^smu_jv_j$ where $sum_{j=1}^smu_j=1$.
Summing them
$$x+y=lambda_1u_1+lambda_2u_2+cdots+lambda_pu_p+mu_1v_1+mu_2v_2+cdots+mu_sv_s.$$
Now the question is how we can get something in the form of $text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}$?
geometry vectors convex-analysis convex-geometry convex-hulls
geometry vectors convex-analysis convex-geometry convex-hulls
edited Dec 14 '18 at 4:51
Batominovski
33.2k33293
33.2k33293
asked Dec 14 '18 at 3:48
SepideSepide
5048
5048
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
We can use the match-up procedure as follows. Set $$lambda_i^0:=lambda_itext{ for each }i=1,2,ldots,p,,$$ $$mu_j^0:=mu_jtext{ for each }j=1,2,ldots,s,,$$ and $$z_0:=x+y,.$$ Suppose that we have $$z_k=sum_{i=1}^p,lambda_i^k,u_i+sum_{j=1}^s,mu_j^k,v_j$$ for some nonnegative integer $k$ and for some $lambda_i^k,mu_j^kin[0,1]$ such that $$s_k:=sum_{i=1}^p,lambda_i^k=sum_{j=1}^s,mu_j^k,.$$
If $s_k=0$, then the process terminates at this point. If $s_k>0$, then we take $i_k:=min{i,|,lambda^k_ineq 0}$ and $j_k:=min{j,|,mu^k_jneq 0}$. Now define $w_k:=u_{i_k}+v_{j_k}$. Let $nu_k:=min{lambda_{i_k},mu_{j_k}}$. Then, set
$$lambda_i^{k+1}:=left{begin{array}{ll}lambda_i^k&text{if }ineq i_k,,\ lambda_i^k-nu_k&text{if }i=i_k,,end{array}right}text{ for every }i=1,2,ldots,p,,$$
$$mu_j^{k+1}:=left{begin{array}{ll}mu_j^k&text{if }jneq j_k,,\ mu_j^k-nu_k&text{if }j=j_k,,end{array}right}text{ for every } j=1,2,ldots,s,,$$
and $$z_{k+1}:=z_k-nu_k,w_k,.$$
Note that this algorithm cannot prolong indefinitely, since the number of nonzero coefficients amongst $lambda_1,lambda_2,ldots,lambda_p,mu_1,mu_2,ldots,mu_s$ decreases each step. When the loop is over (say, in $l+1$ steps, namely, with $s_1,s_2,ldots,s_l>0$ and $s_{l+1}=0$), we can see that $$x+y=sum_{k=1}^l ,nu_k,w_k,,$$
where $nu_kin[0,1]$ for each $k=1,2,ldots,l$ with $sumlimits_{k=1}^l,nu_k=1$, and each $w_k$ is of the form $u_i+v_j$ for some $i=1,2,ldots,p$ and $j=1,2,ldots,s$. (It is obvious that $lleq p+s$, by the way.) This proves that
$$begin{align}text{conv}left{u_1,u_2,ldots,u_pright}&+text{conv}left{v_1,v_2,ldots,v_sright}\&subseteq text{conv}big{u_i+v_j,big|,i=1,2,ldots,p text{and} j=1,2,ldots,sbig},.end{align}$$
To prove the reversed inclusion, it is actually easier. Let $$ain text{conv}big{u_i+v_j,big|,i=1,2,ldots,ptext{ and }j=1,2,ldots,sbig},.$$ Then, there exist $alpha_{i,j}in[0,1]$ for $i=1,2,ldots,p$ and $j=1,2,ldots,s$ such that
$$sum_{i=1}^p,sum_{j=1}^s,alpha_{i,j}=1text{ and }a=sum_{i=1}^p,sum_{j=1}^s,alpha_{i,j},left(u_i+v_jright),.$$
By taking $beta_i:=sumlimits_{j=1}^s,alpha_{i,j}$ for each $i=1,2,ldots,p$ and $gamma_j:=sumlimits_{i=1}^p,alpha_{i,j}$ for every $j=1,2,ldots,s$, we see that $beta_iin[0,1]$ for each $i=1,2,ldots,p$, $gamma_jin[0,1]$ for every $j=1,2,ldots,s$, $sumlimits_{i=1}^p,beta_i=1$, and $sumlimits_{j=1}^s,gamma_j=1$. Thus, $a=b+c$, where
$$b:=sum_{i=1}^p,beta_i,u_iin text{conv}left{u_1,u_2,ldots,u_pright}$$
and
$$c:=sum_{j=1}^s,gamma_j,v_jintext{conv}left{v_1,v_2,ldots,v_sright},.$$
Hence,
$$begin{align}text{conv}big{u_i+v_j,big|,i=1,2,ldots,p &text{and} j=1,2,ldots,sbig}\&subseteq text{conv}left{u_1,u_2,ldots,u_pright}+text{conv}left{v_1,v_2,ldots,v_sright},,end{align}$$
as desired.
$endgroup$
$begingroup$
Dear Batominovski, If You have a few minutes, Can you check my solution.? If you want to write any comment.. Thank you very much.. math.stackexchange.com/q/3043357/460967
$endgroup$
– Student
Dec 18 '18 at 11:27
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038918%2fwhat-is-the-convex-hull-of-textconvu-1-u-2-cdots-u-p-textconvv-1-v-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We can use the match-up procedure as follows. Set $$lambda_i^0:=lambda_itext{ for each }i=1,2,ldots,p,,$$ $$mu_j^0:=mu_jtext{ for each }j=1,2,ldots,s,,$$ and $$z_0:=x+y,.$$ Suppose that we have $$z_k=sum_{i=1}^p,lambda_i^k,u_i+sum_{j=1}^s,mu_j^k,v_j$$ for some nonnegative integer $k$ and for some $lambda_i^k,mu_j^kin[0,1]$ such that $$s_k:=sum_{i=1}^p,lambda_i^k=sum_{j=1}^s,mu_j^k,.$$
If $s_k=0$, then the process terminates at this point. If $s_k>0$, then we take $i_k:=min{i,|,lambda^k_ineq 0}$ and $j_k:=min{j,|,mu^k_jneq 0}$. Now define $w_k:=u_{i_k}+v_{j_k}$. Let $nu_k:=min{lambda_{i_k},mu_{j_k}}$. Then, set
$$lambda_i^{k+1}:=left{begin{array}{ll}lambda_i^k&text{if }ineq i_k,,\ lambda_i^k-nu_k&text{if }i=i_k,,end{array}right}text{ for every }i=1,2,ldots,p,,$$
$$mu_j^{k+1}:=left{begin{array}{ll}mu_j^k&text{if }jneq j_k,,\ mu_j^k-nu_k&text{if }j=j_k,,end{array}right}text{ for every } j=1,2,ldots,s,,$$
and $$z_{k+1}:=z_k-nu_k,w_k,.$$
Note that this algorithm cannot prolong indefinitely, since the number of nonzero coefficients amongst $lambda_1,lambda_2,ldots,lambda_p,mu_1,mu_2,ldots,mu_s$ decreases each step. When the loop is over (say, in $l+1$ steps, namely, with $s_1,s_2,ldots,s_l>0$ and $s_{l+1}=0$), we can see that $$x+y=sum_{k=1}^l ,nu_k,w_k,,$$
where $nu_kin[0,1]$ for each $k=1,2,ldots,l$ with $sumlimits_{k=1}^l,nu_k=1$, and each $w_k$ is of the form $u_i+v_j$ for some $i=1,2,ldots,p$ and $j=1,2,ldots,s$. (It is obvious that $lleq p+s$, by the way.) This proves that
$$begin{align}text{conv}left{u_1,u_2,ldots,u_pright}&+text{conv}left{v_1,v_2,ldots,v_sright}\&subseteq text{conv}big{u_i+v_j,big|,i=1,2,ldots,p text{and} j=1,2,ldots,sbig},.end{align}$$
To prove the reversed inclusion, it is actually easier. Let $$ain text{conv}big{u_i+v_j,big|,i=1,2,ldots,ptext{ and }j=1,2,ldots,sbig},.$$ Then, there exist $alpha_{i,j}in[0,1]$ for $i=1,2,ldots,p$ and $j=1,2,ldots,s$ such that
$$sum_{i=1}^p,sum_{j=1}^s,alpha_{i,j}=1text{ and }a=sum_{i=1}^p,sum_{j=1}^s,alpha_{i,j},left(u_i+v_jright),.$$
By taking $beta_i:=sumlimits_{j=1}^s,alpha_{i,j}$ for each $i=1,2,ldots,p$ and $gamma_j:=sumlimits_{i=1}^p,alpha_{i,j}$ for every $j=1,2,ldots,s$, we see that $beta_iin[0,1]$ for each $i=1,2,ldots,p$, $gamma_jin[0,1]$ for every $j=1,2,ldots,s$, $sumlimits_{i=1}^p,beta_i=1$, and $sumlimits_{j=1}^s,gamma_j=1$. Thus, $a=b+c$, where
$$b:=sum_{i=1}^p,beta_i,u_iin text{conv}left{u_1,u_2,ldots,u_pright}$$
and
$$c:=sum_{j=1}^s,gamma_j,v_jintext{conv}left{v_1,v_2,ldots,v_sright},.$$
Hence,
$$begin{align}text{conv}big{u_i+v_j,big|,i=1,2,ldots,p &text{and} j=1,2,ldots,sbig}\&subseteq text{conv}left{u_1,u_2,ldots,u_pright}+text{conv}left{v_1,v_2,ldots,v_sright},,end{align}$$
as desired.
$endgroup$
$begingroup$
Dear Batominovski, If You have a few minutes, Can you check my solution.? If you want to write any comment.. Thank you very much.. math.stackexchange.com/q/3043357/460967
$endgroup$
– Student
Dec 18 '18 at 11:27
add a comment |
$begingroup$
We can use the match-up procedure as follows. Set $$lambda_i^0:=lambda_itext{ for each }i=1,2,ldots,p,,$$ $$mu_j^0:=mu_jtext{ for each }j=1,2,ldots,s,,$$ and $$z_0:=x+y,.$$ Suppose that we have $$z_k=sum_{i=1}^p,lambda_i^k,u_i+sum_{j=1}^s,mu_j^k,v_j$$ for some nonnegative integer $k$ and for some $lambda_i^k,mu_j^kin[0,1]$ such that $$s_k:=sum_{i=1}^p,lambda_i^k=sum_{j=1}^s,mu_j^k,.$$
If $s_k=0$, then the process terminates at this point. If $s_k>0$, then we take $i_k:=min{i,|,lambda^k_ineq 0}$ and $j_k:=min{j,|,mu^k_jneq 0}$. Now define $w_k:=u_{i_k}+v_{j_k}$. Let $nu_k:=min{lambda_{i_k},mu_{j_k}}$. Then, set
$$lambda_i^{k+1}:=left{begin{array}{ll}lambda_i^k&text{if }ineq i_k,,\ lambda_i^k-nu_k&text{if }i=i_k,,end{array}right}text{ for every }i=1,2,ldots,p,,$$
$$mu_j^{k+1}:=left{begin{array}{ll}mu_j^k&text{if }jneq j_k,,\ mu_j^k-nu_k&text{if }j=j_k,,end{array}right}text{ for every } j=1,2,ldots,s,,$$
and $$z_{k+1}:=z_k-nu_k,w_k,.$$
Note that this algorithm cannot prolong indefinitely, since the number of nonzero coefficients amongst $lambda_1,lambda_2,ldots,lambda_p,mu_1,mu_2,ldots,mu_s$ decreases each step. When the loop is over (say, in $l+1$ steps, namely, with $s_1,s_2,ldots,s_l>0$ and $s_{l+1}=0$), we can see that $$x+y=sum_{k=1}^l ,nu_k,w_k,,$$
where $nu_kin[0,1]$ for each $k=1,2,ldots,l$ with $sumlimits_{k=1}^l,nu_k=1$, and each $w_k$ is of the form $u_i+v_j$ for some $i=1,2,ldots,p$ and $j=1,2,ldots,s$. (It is obvious that $lleq p+s$, by the way.) This proves that
$$begin{align}text{conv}left{u_1,u_2,ldots,u_pright}&+text{conv}left{v_1,v_2,ldots,v_sright}\&subseteq text{conv}big{u_i+v_j,big|,i=1,2,ldots,p text{and} j=1,2,ldots,sbig},.end{align}$$
To prove the reversed inclusion, it is actually easier. Let $$ain text{conv}big{u_i+v_j,big|,i=1,2,ldots,ptext{ and }j=1,2,ldots,sbig},.$$ Then, there exist $alpha_{i,j}in[0,1]$ for $i=1,2,ldots,p$ and $j=1,2,ldots,s$ such that
$$sum_{i=1}^p,sum_{j=1}^s,alpha_{i,j}=1text{ and }a=sum_{i=1}^p,sum_{j=1}^s,alpha_{i,j},left(u_i+v_jright),.$$
By taking $beta_i:=sumlimits_{j=1}^s,alpha_{i,j}$ for each $i=1,2,ldots,p$ and $gamma_j:=sumlimits_{i=1}^p,alpha_{i,j}$ for every $j=1,2,ldots,s$, we see that $beta_iin[0,1]$ for each $i=1,2,ldots,p$, $gamma_jin[0,1]$ for every $j=1,2,ldots,s$, $sumlimits_{i=1}^p,beta_i=1$, and $sumlimits_{j=1}^s,gamma_j=1$. Thus, $a=b+c$, where
$$b:=sum_{i=1}^p,beta_i,u_iin text{conv}left{u_1,u_2,ldots,u_pright}$$
and
$$c:=sum_{j=1}^s,gamma_j,v_jintext{conv}left{v_1,v_2,ldots,v_sright},.$$
Hence,
$$begin{align}text{conv}big{u_i+v_j,big|,i=1,2,ldots,p &text{and} j=1,2,ldots,sbig}\&subseteq text{conv}left{u_1,u_2,ldots,u_pright}+text{conv}left{v_1,v_2,ldots,v_sright},,end{align}$$
as desired.
$endgroup$
$begingroup$
Dear Batominovski, If You have a few minutes, Can you check my solution.? If you want to write any comment.. Thank you very much.. math.stackexchange.com/q/3043357/460967
$endgroup$
– Student
Dec 18 '18 at 11:27
add a comment |
$begingroup$
We can use the match-up procedure as follows. Set $$lambda_i^0:=lambda_itext{ for each }i=1,2,ldots,p,,$$ $$mu_j^0:=mu_jtext{ for each }j=1,2,ldots,s,,$$ and $$z_0:=x+y,.$$ Suppose that we have $$z_k=sum_{i=1}^p,lambda_i^k,u_i+sum_{j=1}^s,mu_j^k,v_j$$ for some nonnegative integer $k$ and for some $lambda_i^k,mu_j^kin[0,1]$ such that $$s_k:=sum_{i=1}^p,lambda_i^k=sum_{j=1}^s,mu_j^k,.$$
If $s_k=0$, then the process terminates at this point. If $s_k>0$, then we take $i_k:=min{i,|,lambda^k_ineq 0}$ and $j_k:=min{j,|,mu^k_jneq 0}$. Now define $w_k:=u_{i_k}+v_{j_k}$. Let $nu_k:=min{lambda_{i_k},mu_{j_k}}$. Then, set
$$lambda_i^{k+1}:=left{begin{array}{ll}lambda_i^k&text{if }ineq i_k,,\ lambda_i^k-nu_k&text{if }i=i_k,,end{array}right}text{ for every }i=1,2,ldots,p,,$$
$$mu_j^{k+1}:=left{begin{array}{ll}mu_j^k&text{if }jneq j_k,,\ mu_j^k-nu_k&text{if }j=j_k,,end{array}right}text{ for every } j=1,2,ldots,s,,$$
and $$z_{k+1}:=z_k-nu_k,w_k,.$$
Note that this algorithm cannot prolong indefinitely, since the number of nonzero coefficients amongst $lambda_1,lambda_2,ldots,lambda_p,mu_1,mu_2,ldots,mu_s$ decreases each step. When the loop is over (say, in $l+1$ steps, namely, with $s_1,s_2,ldots,s_l>0$ and $s_{l+1}=0$), we can see that $$x+y=sum_{k=1}^l ,nu_k,w_k,,$$
where $nu_kin[0,1]$ for each $k=1,2,ldots,l$ with $sumlimits_{k=1}^l,nu_k=1$, and each $w_k$ is of the form $u_i+v_j$ for some $i=1,2,ldots,p$ and $j=1,2,ldots,s$. (It is obvious that $lleq p+s$, by the way.) This proves that
$$begin{align}text{conv}left{u_1,u_2,ldots,u_pright}&+text{conv}left{v_1,v_2,ldots,v_sright}\&subseteq text{conv}big{u_i+v_j,big|,i=1,2,ldots,p text{and} j=1,2,ldots,sbig},.end{align}$$
To prove the reversed inclusion, it is actually easier. Let $$ain text{conv}big{u_i+v_j,big|,i=1,2,ldots,ptext{ and }j=1,2,ldots,sbig},.$$ Then, there exist $alpha_{i,j}in[0,1]$ for $i=1,2,ldots,p$ and $j=1,2,ldots,s$ such that
$$sum_{i=1}^p,sum_{j=1}^s,alpha_{i,j}=1text{ and }a=sum_{i=1}^p,sum_{j=1}^s,alpha_{i,j},left(u_i+v_jright),.$$
By taking $beta_i:=sumlimits_{j=1}^s,alpha_{i,j}$ for each $i=1,2,ldots,p$ and $gamma_j:=sumlimits_{i=1}^p,alpha_{i,j}$ for every $j=1,2,ldots,s$, we see that $beta_iin[0,1]$ for each $i=1,2,ldots,p$, $gamma_jin[0,1]$ for every $j=1,2,ldots,s$, $sumlimits_{i=1}^p,beta_i=1$, and $sumlimits_{j=1}^s,gamma_j=1$. Thus, $a=b+c$, where
$$b:=sum_{i=1}^p,beta_i,u_iin text{conv}left{u_1,u_2,ldots,u_pright}$$
and
$$c:=sum_{j=1}^s,gamma_j,v_jintext{conv}left{v_1,v_2,ldots,v_sright},.$$
Hence,
$$begin{align}text{conv}big{u_i+v_j,big|,i=1,2,ldots,p &text{and} j=1,2,ldots,sbig}\&subseteq text{conv}left{u_1,u_2,ldots,u_pright}+text{conv}left{v_1,v_2,ldots,v_sright},,end{align}$$
as desired.
$endgroup$
We can use the match-up procedure as follows. Set $$lambda_i^0:=lambda_itext{ for each }i=1,2,ldots,p,,$$ $$mu_j^0:=mu_jtext{ for each }j=1,2,ldots,s,,$$ and $$z_0:=x+y,.$$ Suppose that we have $$z_k=sum_{i=1}^p,lambda_i^k,u_i+sum_{j=1}^s,mu_j^k,v_j$$ for some nonnegative integer $k$ and for some $lambda_i^k,mu_j^kin[0,1]$ such that $$s_k:=sum_{i=1}^p,lambda_i^k=sum_{j=1}^s,mu_j^k,.$$
If $s_k=0$, then the process terminates at this point. If $s_k>0$, then we take $i_k:=min{i,|,lambda^k_ineq 0}$ and $j_k:=min{j,|,mu^k_jneq 0}$. Now define $w_k:=u_{i_k}+v_{j_k}$. Let $nu_k:=min{lambda_{i_k},mu_{j_k}}$. Then, set
$$lambda_i^{k+1}:=left{begin{array}{ll}lambda_i^k&text{if }ineq i_k,,\ lambda_i^k-nu_k&text{if }i=i_k,,end{array}right}text{ for every }i=1,2,ldots,p,,$$
$$mu_j^{k+1}:=left{begin{array}{ll}mu_j^k&text{if }jneq j_k,,\ mu_j^k-nu_k&text{if }j=j_k,,end{array}right}text{ for every } j=1,2,ldots,s,,$$
and $$z_{k+1}:=z_k-nu_k,w_k,.$$
Note that this algorithm cannot prolong indefinitely, since the number of nonzero coefficients amongst $lambda_1,lambda_2,ldots,lambda_p,mu_1,mu_2,ldots,mu_s$ decreases each step. When the loop is over (say, in $l+1$ steps, namely, with $s_1,s_2,ldots,s_l>0$ and $s_{l+1}=0$), we can see that $$x+y=sum_{k=1}^l ,nu_k,w_k,,$$
where $nu_kin[0,1]$ for each $k=1,2,ldots,l$ with $sumlimits_{k=1}^l,nu_k=1$, and each $w_k$ is of the form $u_i+v_j$ for some $i=1,2,ldots,p$ and $j=1,2,ldots,s$. (It is obvious that $lleq p+s$, by the way.) This proves that
$$begin{align}text{conv}left{u_1,u_2,ldots,u_pright}&+text{conv}left{v_1,v_2,ldots,v_sright}\&subseteq text{conv}big{u_i+v_j,big|,i=1,2,ldots,p text{and} j=1,2,ldots,sbig},.end{align}$$
To prove the reversed inclusion, it is actually easier. Let $$ain text{conv}big{u_i+v_j,big|,i=1,2,ldots,ptext{ and }j=1,2,ldots,sbig},.$$ Then, there exist $alpha_{i,j}in[0,1]$ for $i=1,2,ldots,p$ and $j=1,2,ldots,s$ such that
$$sum_{i=1}^p,sum_{j=1}^s,alpha_{i,j}=1text{ and }a=sum_{i=1}^p,sum_{j=1}^s,alpha_{i,j},left(u_i+v_jright),.$$
By taking $beta_i:=sumlimits_{j=1}^s,alpha_{i,j}$ for each $i=1,2,ldots,p$ and $gamma_j:=sumlimits_{i=1}^p,alpha_{i,j}$ for every $j=1,2,ldots,s$, we see that $beta_iin[0,1]$ for each $i=1,2,ldots,p$, $gamma_jin[0,1]$ for every $j=1,2,ldots,s$, $sumlimits_{i=1}^p,beta_i=1$, and $sumlimits_{j=1}^s,gamma_j=1$. Thus, $a=b+c$, where
$$b:=sum_{i=1}^p,beta_i,u_iin text{conv}left{u_1,u_2,ldots,u_pright}$$
and
$$c:=sum_{j=1}^s,gamma_j,v_jintext{conv}left{v_1,v_2,ldots,v_sright},.$$
Hence,
$$begin{align}text{conv}big{u_i+v_j,big|,i=1,2,ldots,p &text{and} j=1,2,ldots,sbig}\&subseteq text{conv}left{u_1,u_2,ldots,u_pright}+text{conv}left{v_1,v_2,ldots,v_sright},,end{align}$$
as desired.
edited Dec 14 '18 at 11:17
answered Dec 14 '18 at 4:32
BatominovskiBatominovski
33.2k33293
33.2k33293
$begingroup$
Dear Batominovski, If You have a few minutes, Can you check my solution.? If you want to write any comment.. Thank you very much.. math.stackexchange.com/q/3043357/460967
$endgroup$
– Student
Dec 18 '18 at 11:27
add a comment |
$begingroup$
Dear Batominovski, If You have a few minutes, Can you check my solution.? If you want to write any comment.. Thank you very much.. math.stackexchange.com/q/3043357/460967
$endgroup$
– Student
Dec 18 '18 at 11:27
$begingroup$
Dear Batominovski, If You have a few minutes, Can you check my solution.? If you want to write any comment.. Thank you very much.. math.stackexchange.com/q/3043357/460967
$endgroup$
– Student
Dec 18 '18 at 11:27
$begingroup$
Dear Batominovski, If You have a few minutes, Can you check my solution.? If you want to write any comment.. Thank you very much.. math.stackexchange.com/q/3043357/460967
$endgroup$
– Student
Dec 18 '18 at 11:27
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038918%2fwhat-is-the-convex-hull-of-textconvu-1-u-2-cdots-u-p-textconvv-1-v-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown